Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3496-3503    https://doi.org/10.11896/j.issn.1005-023X.2018.20.002
  无机非金属及其复合材料 |
载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能
王辉, 李士君, 王梅, 裴彦博, 胡绍争
辽宁石油化工大学化学化工与环境学部,抚顺 113001;
Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) Isotype Heterojunction Catalysts with an Application to Photocatalytic N2 Fixation
WANG Hui, LI Shijun, WANG Mei, PEI Yanbo, HU Shaozheng
Division of Chemistry, Chemical Engineering and Environment, Liaoning Shihua University, Fushun 113001;
下载:  全 文 ( PDF ) ( 4389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ag作为助催化剂能够促进光电子的迁移,在光催化分解水制氢气、CO2还原、重金属离子还原等反应中应用颇多,然而,到目前为止未见将Ag单质作为助催化剂用于光催化固氮产氨反应的报道。本工作制备了负载单质Ag的g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂,并考察了其光催化固氮产氨的性能。采用X射线衍射(XRD)、透射电镜(TEM)、紫外可见光谱(UV-Vis)、X射线光电子能谱(XPS)、拉曼光谱(Raman)、荧光光谱(PL)、电化学阻抗谱(EIS)、光电流分析等手段对制备的催化剂进行了表征。结果表明,Ag以单质态存在于催化剂表面。所担载的Ag的等离子体效应一方面促进了催化剂对可见光的吸收,使反应体系能产生更多的光生电子-空穴对;另一方面使得光生电子能够在g-C3N4与Ag单质间迁移,提高了催化剂的电子-空穴分离效率。负载Ag后g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的铵离子产生速率为1.36 mg·L-1·h-1·g-1cat,相比未负载Ag时(0.59 mg·L-1·h-1·g-1cat)大幅提高,与Pt负载催化剂相当,并且是由单纯三聚氰胺和尿素制备的g-C3N4的4.9倍和3.4倍。除固氮反应外,制备的载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂在光催化还原氧气制取双氧水的反应中也表现出优良的催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王辉
李士君
王梅
裴彦博
胡绍争
关键词:  石墨相氮化碳(g-C3N4)  银负载  贵金属  同素异质结  光催化固氮    
Abstract: As a cocatalyst, silver can enhance the photoelectrons migration and has found wide application in a variety of photocatalytic reduction reactions such as water splitting hydrogen generation, CO2 reduction, heavy metal ion reduction, etc. However, to the best of our knowledge, no unconcealed work has concerned N2 photofixation by using Ag-loaded catalysts. Our present work aimed to prepare a series of Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) isotype heterojunction catalysts differing in Ag content (Ag(x%)-CN, x=0.5,1,2,4) and estimate their N2 photofixation performance. The means of XRD, TEM, UV-Vis, XPS, Raman, PL, EIS and photocurrent response were involved in the characterization. Our experiment confirmed the existence of silver on the catalyst surface as metal state, and revealed the acting mechanism of the loaded silver cocatalyst: the plasma effect of silver promotes the visible-light absorption so that the reaction system can produce more photogenerated electron-hole pairs, and on the other hand, the photoelectrons migration between g-C3N4 and Ag improves the electron-hole separation efficiency of the composite catalyst. The NH4+ ge-neration rate of the Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) isotype heterojunction composite catalyst was determined to be 1.36 mg·L-1·h-1·g-1cat with a dramatical increment compared to that of g-C3N4(Ⅰ)/g-C3N4(Ⅱ) without silver-loading (MU-CN,0.59 mg·L-1·h-1·g-1cat). This catalytic performance is equivalent to the Pt-loaded catalysts, and moreover, 4.9 or 3.4 times higher than g-C3N4prepared by exclusively using melamine or urea. In addition to nitrogen fixation, the Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) isotype heterojunction catalysts also exhibited excellent catalytic performance in the reaction of photocatalytic reduction of oxygen to hydrogen peroxide.
Key words:  graphitic carbon nitride (g-C3N4)    silver loading    noble metal    isotype heterojunction    N2 photofixation
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  O641  
  O649  
基金资助: 辽宁省教育厅一般项目(L2014145);辽宁省自然科学基金(201602467)
作者简介:  男,1994年生,硕士研究生,研究方向为光催化材料 E-mail:38769468@qq.com 王辉:通信作者,女,1981年生,博士,讲师,研究方向为光催化材料及抗菌材料 E-mail:wanghuilnpu@163.com
引用本文:    
王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
WANG Hui, LI Shijun, WANG Mei, PEI Yanbo, HU Shaozheng. Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) Isotype Heterojunction Catalysts with an Application to Photocatalytic N2 Fixation. Materials Reports, 2018, 32(20): 3496-3503.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.002  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3496
1 Schrauzcr G N, Guth T D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide [J]. Journal of America Chemistry Society,1977,99(22):7189.
2 Hu S Z, Li F Y, Fan Z P, et al. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability [J]. Dalton Transactions,2015,44(3):1084.
3 Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials,2009,8(1):76.
4 Ansari M B, Jin H L, Parvin M N, et al. Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes [J]. Catalysis Today,2012,185(1):211.
5 Hu S Z, Chen X, Li Q, et al. Fe3+ doping promoted N2 photofi-xation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis [J]. Applied Catalysis B: Environmental,2017,201(1):58.
6 Li H, Shang J, Ai Z H, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets [J]. Journal of America Chemistry Society,2015,137(19):6393.
7 Li S N, Dong G H, Hailili R, et al. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies [J]. Applied Catalysis B: Environmental,2016,190(5):26.
8 Rong X S, Qiu F X, Yan J, et al. Coupling with a narrow-band-gap semiconductor for enhancement of visible-light photocatalytic activity: Preparation of Bi2S3/g-C3N4 and application for degradation of RhB [J]. RSC Advance,2015,5(32):24944.
9 Liu H H, Chen D L, Wang Z Q, et al. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 he-terojunctions with highly enhanced photocatalytic hydrogen evolution performance [J]. Applied Catalysis B: Environmental,2017,203(1):300.
10 Bai X J, Zong R L, Li C X, et al. Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite [J]. Applied Catalysis B: Environmental,2014,147(5):82.
11 Krejcíková S, Matejová L, Kocí K, et al. Preparation and characte-rization of Ag-doped crystalline titania for photocatalysis applications [J]. Applied Catalysis B: Environmental,2012,111-112(12):119.
12 Eskandarloo H, Badiei A, Behnajady M A, et al. Minimization of electrical energy consumption in the photocatalytic reduction of Cr (Ⅵ) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles [J]. RSC Advance,2014,4(54):28587.
13 Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry,1996,96(1-3):181.
14 Liao G Z, Chen S, Quan X, et al. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation [J]. Journal of Materials Chemistry,2012,22(6):2721.
15 Sridharan K, Jang E, Park T J. Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants[J].Applied Catalysis B: Environmental,2013,142-143(1):718.
16 Ge L, Han C C, Xiao X L, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity [J]. International Journal of Hydrogen Energy,2013,38(17):6960.
17 Lu M L, Pei Z X, Weng S X, et al. Constructing atomic layer g-C3N4-CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity [J]. Physical Chemistry Chemical Physics,2014,16(39):21280.
18 Yang M, Hu S Z, Li F Y, et al. The influence of preparation me-thod on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst [J]. Ceramics International,2014,40(8):11963.
19 Hu S Z, Ma L, Li F Y, et al. Construction of g-C3N4/S-g-C3N4 metal-free isotype heterojunctions with an enhanced charge driving force and their photocatalytic performance under anoxic conditions [J]. RSC Advance,2015,5(110):90750.
20 Wang J H, Chen Y L, Shen Y F, et al. Coupling polymorphic nanostructured carbon nitrides into an isotype heterojunction with boosted photocatalytic H2 evolution [J]. Chemical Communications,2017,53(20):2978.
21 Dong F, Ni Z L, Li P D, et al. A general method for type Ⅰ and type Ⅱ g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalysis [J]. New Journal of Chemistry,2015,39(6):4737.
22 Zhao W R, Zhang J, Zhu X, et al. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger [J]. Applied Catalysis B: Environmental,2014,144(1):468.
23 Dong F, Zhao Z W, Xiong T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis [J]. ACS Applied Materials&Interfaces,2013,5(21):11392.
24 Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry [J]. Angewandte Chemie International Edition,2012,51(1):68.
25 Sakai H, Kanda T, Shibata H, et al. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle [J]. Journal of America Chemistry Society,2006,128(15):4944.
26 Sun Y J, Xiong T, Ni Z L, et al. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration [J]. Applied Surface Science,2015,358(15):356.
27 Ge L, Han C C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J]. Applied Catalysis A: General,2011,409-410(15):215.
28 Wang P, Huang B B, Qin X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light [J]. Angewandte Chemie International Edition,2008,47(41):7931.
29 Ge L, Han C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity [J]. Applied Catalysis B: Environmental,2012,117-118(1):268.
30 Lei W, Portehault D, Dimova R, et al. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors [J]. Journal of America Chemistry Society,2011,133(18):7121.
31 Zhang Y W, Liu J H, Wu G, et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production [J]. Nanoscale,2012,4(17):5300.
32 Fu Y S, Huang T, Zhang L L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: A borohydride-generated superoxide radical approach [J]. Nanoscale,2015,7(32):13723.
33 Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries [J]. Carbon,2009,47(8):2049.
34 Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts [J]. ACS Nano,2010,4(7):4174.
35 Jiang J Z, Zhu L H, Zou J, et al. Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability [J]. Carbon,2015,87(1):193.
36 Wen C, Yin A, Dai W, ChemInform abstract: Recent advances in silver-based heterogeneous catalysts for green chemistry processes [J]. Applied Catalysis B: Environmental,2014,160-161(1):730.
37 He B L, Dong B, Li H L. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery [J]. Electrochemistry Communications,2007,9(3):425.
[1] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[2] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed