Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3489-3495    https://doi.org/10.11896/j.issn.1005-023X.2018.20.001
  无机非金属及其复合材料 |
橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较
于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利
西南大学食品科学学院,重庆 400715;
Comparisons in the Structures and Properties of Silver Nanoparticles Synthesized by Amakusa Peels and Sodium Borohydride
YU Jialun, XU Dan, REN Dan, XIE Dongmei, GAO Yanli
College of Food Science, Southwest University, Chongqing 400715;
下载:  全 文 ( PDF ) ( 2475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以天草柑橘皮提取液作为绿色还原剂,硼氢化钠(NaBH4)作为化学还原剂制备两种纳米银(G-AgNPs和C-AgNPs),对二者的还原率、粒径尺寸及形貌、结晶结构以及组成成分进行表征,比较它们在分散性、抗菌性和抗氧化性等性能上的差异。结果表明,两种还原剂对Ag+的还原率都可达90%以上。G-AgNPs与C-AgNPs均为球形或类球形的面心立方结构晶体,但G-AgNPs的粒径尺寸分布较窄,平均粒径与粒度中值(D50)分别为29.81 nm和28.21 nm,小于C-AgNPs。同时,G-AgNPs表面吸附了橘皮提取液中的活性成分,减少了粒子间的团聚,因而相较于C-AgNPs有更好的分散性和稳定性。G-AgNPs与C-AgNPs对食源性革兰氏阳性菌(金黄色葡萄球菌、枯草芽孢杆菌)和革兰氏阴性菌(大肠杆菌、伤寒沙门氏菌)均表现出较强的生长抑制效果,但G-AgNPs的抑菌效果总体优于C-AgNPs。同时,由于表面活性成分的存在,G-AgNPs对亚甲基蓝(Methylene blue,MB)的脱色率显著高于C-AgNPs,具有很强的抗氧化活性。G-AgNPs所具有的良好分散性、抗菌性和抗氧化性使得它们成为一种理想的纳米填料,在功能性复合材料的制备中具有较大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于嘉伦
徐丹
任丹
谢东梅
高燕利
关键词:  纳米银  橘皮提取液  分散性  抗菌性  抗氧化性    
Abstract: Two kinds of silver nanoparticles (G-AgNPs and C-AgNPs) were synthesized using the aqueous extract of Amakusa peels as the green reduction agent and NaBH4 as the chemical reduction agent, respectively. The reduction rate, particle size and morphologies, crystal structure, and chemical components of G-AgNPs and C-AgNPs were characterized, respectively, while their dispersion capability, antimicrobial activities and antioxidant activities were compared. It was found that the reduction rate of two reduction agents towards Ag+both exceeded 90%. G-AgNPs and C-AgNPs were observed to be spherical or nearly spherical crystals with face-centred cubic structure. G-AgNPs presented a narrower size distribution than C-AgNPs, and smaller average particle size and median size (D50), which were 29.81 nm and 28.21 nm, respectively. Furthermore, G-AgNPs absorbed some active components of the Amakusa peel extract on the surface, which reduced the agglomeration of AgNPs. Therefore, G-AgNPs had better dispersion capability and stability compared to C-AgNPs. Both of G-AgNPs and C-AgNPs showed strong inhibitory activities towards some food-borne gram positive bacteria (Staphylococcus aureus and Bicillus subtilis) and gram negative bacteria (Escherichia coli and Salmonella typhi). However, the antimicrobial activities of G-AgNPs were generally better than C-AgNPs. Moreover, owing to the active compounds absorbed on the surface, the decolourization rate G-AgNPs towards methylene blue (MB) was significantly higher than C-AgNPs, indicating the strong antioxidant activities of G-AgNPs. Good dispersion capability, antimicrobial activities and antioxidant activities of G-AgNPs making them ideal nano-fillers, which can be applied to fabricate functional composite mate-rials.
Key words:  silver nanoparticles    extract of citrus peels    dispersion    antimicrobial activity    antioxidant activity
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TS255.1  
  O614.122  
基金资助: 国家自然科学基金面上项目(21306154);重庆市社会事业与民生保障科技创新专项一般项目(cstc2015shmszx80011);中央高校基本科研业务费重点项目(XDJK2016B012)
作者简介:  于嘉伦:男,1992年生,硕士研究生,研究方向为食品包装材料 E-mail:15086614014@163.com 徐丹:通信作者,女,1983年生,博士,副教授,研究方向为纳米复合包装材料 E-mail:xud@swu.edu.cn
引用本文:    
于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
YU Jialun, XU Dan, REN Dan, XIE Dongmei, GAO Yanli. Comparisons in the Structures and Properties of Silver Nanoparticles Synthesized by Amakusa Peels and Sodium Borohydride. Materials Reports, 2018, 32(20): 3489-3495.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.001  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3489
1 Wang Fei, Xu Weiping, Yang Jinmin, et al. Research progress of preparation of nano-silver[J]. Asia-Pacific Traditional Medicine,2012,8(2):184(in Chinese).
汪菲,徐维平,杨金敏,等.AgNPs的制备进展[J].亚太传统医药,2012,8(2):184.
2 Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity [J]. Journal of Physical Chemistry B,2006,110(33):16248.
3 Zhao Jie, Zhang Dongming. Preparation and application of nano-silver [J]. Materials Review,2010,24(S2):105(in Chinese).
赵杰,张东明.AgNPs的制备及其应用[J].材料导报,2010,24(专辑16):105.
4 Guo Yunchi, Li Hongxu, Li An, et al. A review for nanosilver bio-preparation and application[J]. Materials Review A:Review Papers,2010,24(12):76(in Chinese).
郭云驰,李宏煦,李安,等.AgNPs的生物制备及应用进展[J].材料导报:综述篇,2010,24(12):76.
5 Wiley B J, Chen Y C, Mclellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice[J]. Nano Letters,2007,7(4):1032.
6 Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical Reviews,2011,111(6):3669.
7 Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002,298(5601):2176.
8 Zhao Junying, Li Yingying. Preparation and application of nano-silver[J]. Guangzhou Chemical Industry,2013,41(14):27(in Chinese).
赵俊英,李莹莹.纳米金属银的制备及其应用[J].广州化工,2013,41(14):27.
9 Sun Q, Cai X, Li J W, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacte-rial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,444(4):226.
10 Zhao Haijun, Zhao Weiying, Hong Zehui. Preparation of silver na-noparticles loaded with potentilla discolor extract and evaluation of their antimicrobial activities[J]. Chinese Traditional Patent Medicine,2016,38(10):2141(in Chinese).
赵海军,赵维英,洪泽辉.翻白草提取物银纳米粒制备及其抗菌活性评价[J].中成药,2016,38(10):2141.
11 Bianca M, Luminita D, Marcela A, et al. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity[J]. Journal of Molecular Liquids,2016,221:271.
12 Dong Chunfa, Zhang Xianglin, Cai Hao, et al. Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution[J]. Optik-International Journal for Light and Electron Optics,2016,127(22):10378.
13 Najimu N S, Aysha O S, Rahaman J S, et al. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,124(124):194.
14 Chandran S P, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract[J]. Biotechnology Progress,2006,22(2):577.
15 Prathna T C, Chandrasekaran N, Raichur A M, et al. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size[J]. Colloids and Surfaces B: Biointerfaces,2011,82(1):152.
16 Alzawqari M H, Al-Baddancy A A, Al-Baadani H H, et al. Effect of feeding dried sweet orange (citrus sinensis) peel and lemon grass (cymbopogon citratus) leaves on growth performance, carcass traits, serum metabolites and antioxidant status in broiler during the finisher phase[J]. Environmental Science and Pollution Research,2016,23(17):17077.
17 Chen Kai, Qu Yanan,Tian Guanghui. The research of main components of citrus peel and their development and utilization[J]. Jiangsu Condiment and Subsidiary Food,2015(3):9(in Chinese).
陈凯,屈亚楠,田光辉.柑橘皮的主要成分及其开发利用研究进展[J].江苏调味副食品,2015(3):9.
18 Konwarh R, Gogoi B, Philip R, et al. Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueousextract of Citrus sinensis peel[J]. Colloids and Surfaces B: Biointerfaces,2011,84(2):338.
19 Kahrilas G A, Wally L M, Fredrick S J, et al. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract[J]. ACS Sustainable Chemistry & Engineening,2013,2(3):367.
20 Wang Ting, Xu Dan, Yu Jialun, et al. Relationship between the content of antioxidant components in citrus peels and their reduction efficiency towards nano-silver[J]. Packaging Engineering,2017,38(15):41(in Chinese).
王婷,徐丹,于嘉伦,等.橘皮中抗氧化成分含量与AgNPs还原率的关系[J].包装工程,2017,38(15):41.
21 Du Hui. Synthesis,characterization and antibacterial properties of silver nanoparticles and their composites[D]. Qingdao: Ocean University of China,2014(in Chinese).
杜蕙.AgNPs及其复合材料的制备、表征与抑菌性能研究[D].青岛:中国海洋大学,2014.
22 Zhang J, Wang Q, Zhang X H, et al. Carbamide promoted polyol synthesis and transmittance properties of silver nanocubes[J]. Inorganic Chemistry Frontiers,2016,3(4):547.
23 Bai X H, Wang J G, Guo M, et al. Surfaces enhanced with film-coupled silver nanopolyhedrons for optical transmittance[J]. RSC Advances,2017,7(62):39299.
24 Moreau A, Ciracì C, Mock J J, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas[J]. Nature,2012,492(7427):86.
25 Hiramatsu H, Osterloh F E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants[J]. Chemistry of Materials,2014,16(13):2509.
26 Chen Chen, Yao Chengli, Yuan Xinsong, et al. Study of preparation of Ag nanoparticles with Vitamin E through green chemical reduction[J]. Journal of Instrumental Analysis,2013,32(11):1333(in Chinese).
陈琛,姚成立,袁新松,等.维生素E绿色还原法制备银纳米粒子的研究[J].分析测试学报,2013,32(11):1333.
27 Wang Fang. Preparation of Ag nanomaterial with garlic acid as reducing agent [D]. Tianjin: Tianjin University,2011(in Chinese).
王芳.AgNPs的没食子酸还原制备研究[D].天津:天津大学,2011.
28 Sathiya C K, Akilandeswari S. Fabrication and characterization of silver nanoparticles using Delonixelata leaf broth[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,128(14):337.29 Jagtap U B, Bapat V A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity [J]. Industrial Crops and Products,2013,46(4):132.
30 Wang Yu, Wang Yao, Chen Wuyong. Antibacterial properties of different size of nano-silver to mold[J]. Leather Science and Engineering,2015,25(2):9(in Chinese).
王瑜,王瑶,陈武勇.不同粒径AgNPs抗霉菌性能研究[J].皮革科学与工程,2015,25(2):9.
31 Sosenkova L S, Egorova E M. The effect of particle size on the toxic action of silver nanoparticles[J]. Journal of Physics: Conferences Series,2011,291(1):012027.
32 Ibrahim H M M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms[J]. Journal of Radiation Research and Applied Sciences,2015,8(3):265.
33 Kaviya S, Santhanalakshmi J, Viswanathan B, et al. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,79(3):594.
34 Kruk T, Szczepanowicz K, Kregiel D, et al. Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings [J]. Colloids and Surfaces B: Biointerfaces,2016,137:158.
35 Wu Jian. Research progress of citrus peels active composition and reutilization[J]. Food and Fermentation Technology,2013,49(3):93(in Chinese).
吴剑.柑橘活性成份及皮渣再利用研究进展[J].食品与发酵科技,2013,49(3):93.
36 Zhu Hao, Liang Binxia, Zhao Wenhong, et al. Advanced research of phenolic acid in citrus peel[J]. China Food Additives,2012(2):155(in Chinese).
朱豪,梁彬霞,赵文红,等.橘皮中酚酸的研究进展[J].中国食品添加剂,2012(2):155.
[1] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[2] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[3] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[4] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[5] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[6] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[7] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[8] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[9] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[10] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[11] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[12] 周建华, 查向华. 纳米银/聚合物复合材料的原位法制备技术综述*[J]. 《材料导报》期刊社, 2017, 31(19): 43-50.
[13] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[14] 郑寅, 陈硕平, 王苏展, 宋新建, 胡盛. 甘油分散含银溶胶的制备及抑菌性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 30-34.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed