Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 43-50    https://doi.org/10.11896/j.issn.1005-023X.2017.019.006
  材料综述 |
纳米银/聚合物复合材料的原位法制备技术综述*
周建华, 查向华
陕西科技大学轻工科学与工程学院,西安 710021
A Technological Review Upon the in-situ Synthesis of Silver Nanoparticles/Polymer Composites
ZHOU Jianhua, ZHA Xianghua
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 1624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米银/聚合物复合材料结合了纳米银优异的物理化学性能和聚合物的易加工和成膜性的特点,被广泛应用于抗菌、催化和光电等领域。原位法具有工艺简单、成本低、可形成单分散的纳米粒子等优点,被广泛用于制备纳米银/聚合物复合材料。主要综述了纳米银/聚合物复合材料的原位制备方法,主要包括原位生成法、原位聚合法、双原位合成法,并提出了纳米银/聚合物复合材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周建华
查向华
关键词:  原位法  纳米银  聚合物  复合材料    
Abstract: Silver nanoparticles/polymer composites have been widely used in antibacterial, catalytic, photoelectric and other fields owing to the combination of excellent chemical and physical properties of silver nanoparticles with easy processing and filming properties of polymer. In-situ methods are often applied to prepare silver nanoparticles/polymer composites due to simple process, low cost and the ability to form monodispersed nanoparticles. The methods of in-situ preparation of silver nanoparticles/polymer composites, including in-situ synthesis, in-situ polymerization, double in-situ synthesis, are reviewed in this paper. Finally the future development trend of silver nanoparticles/polymer composites is proposed.
Key words:  in-situ methods    silver nanoparticles    polymer    composites
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB333  
基金资助: *陕西省教育厅服务地方专项计划项目(16JF006);国家自然科学基金(21206088);陕西科技大学科研团队项目(TD12-03)
作者简介:  周建华:女,1973年生,博士,教授,硕士研究生导师,研究方向为功能高分子的合成和应用 E-mail:zhoujianh@21cn.com
引用本文:    
周建华, 查向华. 纳米银/聚合物复合材料的原位法制备技术综述*[J]. 《材料导报》期刊社, 2017, 31(19): 43-50.
ZHOU Jianhua, ZHA Xianghua. A Technological Review Upon the in-situ Synthesis of Silver Nanoparticles/Polymer Composites. Materials Reports, 2017, 31(19): 43-50.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.006  或          http://www.mater-rep.com/CN/Y2017/V31/I19/43
1 Cui Z, Coletta C, Bahry T, et al. A novel radiation chemistry-based methodology for the synthesis of PEDOT/Ag nanocomposites[J]. Mater Chem Frontiers,2017,1:879.
2 Ghazizadeh A, Haddadi S A, Mahdavian M. The effect of sol-gel surface modified silver nanoparticles on the protective properties of the epoxy coating[J]. RSC Adv,2016,6(23):18996.
3 Karfa P, Madhuri R, Sharma P K. A battle between spherical and cube-shaped Ag/AgCl nanoparticle modified imprinted polymer to achieve femtogram detection of alpha-feto protein[J]. J Mater Chem B,2016,4(33):5534.
4 Song J, Kang H, Lee C, et al. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity[J]. ACS Appl Mater Interfaces, 2011,4(1):460.
5 Fang F, Li Y Q, Xiao H M, et al. Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material[J]. J Mater Chem C,2016,4(19):4193.
6 Oladzadabbasabadi N, et al. Functional properties of dually modified sago starch/κ-carrageenan films: An alternative to gelatin in pharmaceutical capsules[J]. Carbohydr Polym,2017,160:43.
7 Yusuf S N F, Azzahari A D, et al. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system[J]. Carbohydr Polym,2017,157:938.
8 Mahmoud A M, et al. Dielectric properties of polymer blends using least square method[J]. Eur J Eng Res Sci,2017,2(1):1.
9 Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts Chem Res,2008,41(12):1578.
10 Lu Y, Mei Y, Walker R, et al. ‘Nano-tree’-type spherical polymer brush particles as templates for metallic nanoparticles[J]. Polymer,2006,47(14):4985.
11 Bryaskova R, Pencheva D, et al. Antibacterial activity of poly (vinyl alcohol)-b-poly (acrylonitrile) based micelles loaded with silver nanoparticles[J]. J Colloid Interface Sci,2010,344(2):424.
12 Maretti L, Billone P S, Liu Y, et al. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles[J]. J Am Chem Soc,2009,131(39):13972.
13 Wang L, Sun Y, Che G, et al. Self-assembled silver nanoparticle films at an air-liquid interface and their applications in SERS and electrochemistry[J]. Appl Surf Sci,2011,257(16):7150.
14 Song Y, Elsayed-Ali H E. Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties[J]. Appl Surf Sci,2010,256(20): 5961.
15 Zhang W, Sun Y, Zhang L. In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly (glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol[J]. Ind Eng Chem Res,2015,54(25):6480.
16 Dirix C, Caaseri B W. Preparation, structure and properties of unia-xially oriented polyethlene-silver nanocomposites[J]. J Mater Sci,1999,34(16):3859.
17 Rivero P J, Urrutia A, Goicoechea J, et al. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles[J]. Nanoscale Res Lett,2011,6(1):305.
18 Dubey P, Gopinath P. Fabrication of electrospun poly (ethylene oxide)-poly (capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro[J]. J Mater Chem B,2016,4(4):726.
19 Zheng L P, Li D,Zhang Y D, et al. Research progress in PLA/inorganic nanocomposite prepared by in-situ technology[J]. China Plast,2012,26(11):8(in Chinese).
郑林萍, 李丹, 张予东, 等. 原位法制备聚乳酸/无机纳米复合材料研究进展[J]. 中国塑料, 2012,26(11):8.
20 Chen Y, Sun Y, Song R, et al. Fluorometric “turn-on” glucose sensing through the in situ generation of silver nanoclusters[J]. RSC Adv,2017,7(3):1396.
21 Sheng Y, Zhu D Q, Chen J D. Preparation strategy of polymer-based nanocomposite[J]. Polym Bull,2001(4):9(in Chinese).
生瑜, 朱德钦,陈建定. 聚合物基无机纳米复合材料的制备方法 Ⅰ. 原位生成法[J]. 高分子通报,2001(4):9.
22 Lu Y, Mei Y, Schrinner M, et al. In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation[J]. J Phys Chem C,2007,111(21):7676.
23 Li P, Xu X, Wu L, et al. Synthesis of silver nanoparticle-loaded sulfadiazine/polyvinyl alcohol nanorods and their antibacterial activities[J]. Med Chem Comm,2015,6(12):2204.
24 Gan Y, Bai S, Hu S, et al. Reaction mechanism of thermally-induced electric conduction of poly (vinyl alcohol)-silver nitrate hybrid films[J]. RSC Adv,2016,6(61):56728.
25 Zhang L S, An J, Luo Q Z, et al. Preparation of P (AA-co-HEA)/Ag nanocomposite sol and its antibacterial activity[J]. J Hebei University of Science and Technology,2012,33(2):107(in Chinese).
张立锁, 安静, 罗青枝, 等. P (AA-co-HEA)/Ag 复合溶胶的制备及抗菌活性研究[J]. 河北科技大学学报,2012,33(2):107.
26 Hong X, Zhang B, Murphy E, et al. Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors[J]. J Power Sources,2017,343:60.
27 Kim Y, Ryu T I, Ok K H, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells[J]. Adv Funct Mater,2015,25(29):4580.
28 Meng M, He H, Xiao J, et al. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application[J]. J Colloid Interface Sci, 2016,461:369.
29 Chen J Y, Wu H C, Chiu Y C, et al. Plasmon-enhanced polymer photovoltaic device performance using different patterned Ag/PVP electrospun nanofibers[J]. Adv Energy Mater,2014,4(8):6510.
30 Al-Omair M A. Synthesis of antibacterial silver-poly (ε-caprola- ctone)-methacrylic acid graft copolymer nanofibers and their evaluation as potential wound dressing[J]. Polymers,2015,7(8):1464.
31 Sun H, Gao Z, Yang L, et al. Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles[J]. Colloid Polym Sci,2010,288(18):1713.
32 Skaria S, Thomann R, et al. A convenient approach to amphiphilic hyperbranched polymers with thioether shell for the preparation and stabilization of coinage metal (Cu, Ag, Au) nanoparticles[J]. J Polym Sci Part A: Polym Chem,2014,52(10): 1369.
33 Zhang Desuo. Fabrication of nanoparticles polymeric hybrids based on hyperbranched polymer and their applications on textile functional finishing[D]. Suzhou: Soochow University,2013(in Chinese).
张德锁. 超支化聚合物纳米材料的制备及对纺织品的改性研究[D]. 苏州: 苏州大学, 2013.
34 Zhu P F, Wu M H, Li Y Q, et al. Modification of hyperbranched polymer and its application in preparation of nano-silver sol[J]. J Textile Res,2015,36(9):55(in Chinese).
朱鹏飞,吴明华,李琰琦,等. 超支化聚合物的改性及其在纳米银溶胶制备中的应用[J]. 纺织学报,2015,36(9):55.
35 Yu K, Lu F, Li Q, et al. In situ assembly of Ag nanoparticles (AgNPs) on porous silkworm cocoon-based would film: Enhanced antimicrobial and wound healing activity[J]. Sci Rep,2017,7(1):2107.
36 Azzam E M S, Solyman S M, Abd-Elaal A A. Fabrication of chitosan/Ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline[J]. Colloids Surf A: Physicochem Eng Aspects,2016,510:221.
37 Luo Qin. Preparation and properties of silk fibroin/polyurethane antibacterial composite material contained with silver[D]. Chongqing: Chongqing University of Technology,2013(in Chinese).
罗琴. 载银丝素/聚氨酯抗菌复合材料的制备及性能研究[D]. 重庆: 重庆理工大学,2013.
38 Wu Y, et al. One-step hydrothermal synthesis of silver nanoparticles loaded on N-doped carbon and application for ca-talytic reduction of 4-nitrophenol[J]. RSC Adv,2015, 5(106):87151.
39 Liu H, Ding M, Ding Z, et al. In situ synthesis of the Ag/poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization[J]. Polym Chem,2017,8(20):3203.
40 Yu M M, Liu D Z, Li W, et al. Preparation and thermal decomposition of silver nanoparticles protected with 3-mercaptopropionic acid[J]. Chem Ind Eng,2015,32(6):18(in Chinese).
余明明, 刘东志, 李巍, 等. 巯基丙酸保护的纳米银制备及热分解行为研究[J]. 化学工业与工程,2015,32(6):18.
41 Chen H Y, Shen H P, Wu H C, et al. Synthesis of monodispersed polystyrene-silver core-shell particles and their application in the fabrication of stretchable large-scale anisotropic conductive films[J]. J Mater Chem C,2015,3(14):3318.
42 An J, Wang D S, Luo Q Z, et al. Silver/polymer nanocomposites[J]. Prog Chem, 2008,20(6):859(in Chinese).
安静, 王德松,罗青枝,等. 银/聚合物纳米复合材料[J]. 化学进展,2008,20(6):859.
43 Chen P, Zuo F, et al. Preparation and applications of polymer-metal nanocomposites[J]. Polym Bull,2006(2):18(in Chinese).
陈平, 左芳, 等. 聚合物-金属纳米复合材料的制备与应用[J]. 高分子通报,2006(2):18.
44 Ren J, Liu Y, Tang X Z. Preparation and properties of polymeric organic-inorganic nanocomposites[J]. J Build Mater,2004,7(1):58(in Chinese).
任杰, 刘艳, 唐小真. 聚合物基有机无机纳米复合材料的制备和性能[J]. 建筑材料学报, 2004,7(1):58.
45 Ou Y C, Yang F, Zhuang Y, et al. Study of the polymerthylmethacrylate/SiO2 nanocomposites by in-situ polymerization[J]. Acta Polym Sin,1997,1(2):199(in Chinese).
欧玉春, 杨锋,庄严,等. 在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J]. 高分子学报,1997,1(2):199.
46 Zhou H O. Preparations, properties and applications of polymer/ SiO2 composite microspheres with special structure fabricated through pickering emulsion template method[D]. Hefei: Hefei University of Technology,2014(in Chinese).
周海鸥. Pickering 乳液为模板的特殊结构聚合物/二氧化硅复合微球的制备, 表征和应用研究[D]. 合肥: 合肥工业大学,2014.
47 Dai L L, Sharma R, Wu C. Self-assembled structure of nanoparticles at a liquid-liquid interface[J]. Langmuir,2005,21(7):2641.
48 He J. Pickering emulsions stabilized by SiO2/Ag composite nanopar- ticles and application in catalytic research[D]. Xi’an: Xi’an University of Science and Technology,2009(in Chinese).
何佳. SiO2/Ag 复合粒子稳定 Pickering 乳液及乳液中的光催化研究[D]. 西安: 西安科技大学,2009.
49 Tang M, Wu T, et al. Factors that affect the stability, type and morphology of Pickering emulsion stabilized by silver nanoparticles/graphene oxide nanocomposites[J]. Mater Res Bull, 2014,60:118.
50 Qi D M, Bao Y Z, Huang Z M, et al. Mini-emulsification and mini-emulsion polymerization of methylmethacrylate/nanosilica dipsersion[J]. Acta Polym Sin,2006,1(6):774(in Chinese).
戚栋明, 包永忠, 黄志明, 等. 甲基丙烯酸甲酯/纳米 SiO2 粒子分散液的细乳化和细乳液聚合[J]. 高分子学报,2006,1(6):774.
51 Fateixa S, Girao A V, Nogueira H I S, et al. Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates[J]. J Mater Chem,2011,21(39):15629.
52 Mamaghani M Y, Pishvaei M, Kaffashi B. Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization[J]. Macromolecular Res,2011, 19(3):243.
53 Horecha M, Kaul E, Horechyy A, et al. Polymer microcapsules loaded with Ag nanocatalyst as active microreactors[J]. J Mater Chem A,2014,2(20):7431.
54 Liu S P, Wei M, Zhang M. Development of prepatation of inorganic nano-particle/polymer nanocomposites by in-situ polymerization[J]. Guangdong Chem Ind,2010,37(5):6(in Chinese).
刘生鹏, 危淼, 张苗. 原位聚合法制备无机纳米粒子/聚合物复合材料的研究进展[J]. 广东化工,2010,37(5):6.
55 Lee E M, Lee H W, Park J H, et al. Multihollow structured poly (methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents[J]. Colloid Polym Sci,2008,286(12):1379.
56 Xiong J Y, Xu G C. Nano-silver/polymer composites synthesized synchronously in situ emulsion polymerization ultrasonically[J]. Anhui Chem Ind,2010,36(3):23(in Chinese).
熊金钰, 徐国财. 超声引发乳液聚合同步原位合成纳米 Ag/聚合物复合粒子的研究[J]. 安徽化工,2010,36(3):23.
57 Wang D, Zhang M, Luo Z, et al. Fabrication of polyurushiol/Ag composite porous films using an in situ photoreduction method[J]. Polym Bull,2016,73(6):1639.
58 Devaki S J, Narayanan R K, Sarojam S. Electrically conducting silver nanoparticle-polyacrylic acid hydrogel by in situ reduction and polymerization approach[J]. Mater Lett,2014,116:135.
59 Li D J, et al. Studieds on the interaction between nano-Ag and P (AMPS-MMA)[J]. Acta Polym Sin,2008(4):378(in Chinese).
李德记,等. 纳米银与基体P(AMPS-MMA)的相互作用研究[J]. 高分子学报,2008(4):378.
60 Gao S T, Xu G C, et al. Synthesis of nano-silver/PAMPS composite by microwave and chatacterization[J]. Acta Mater Compos Sin,2012,29(3):54(in Chinese).
高圣涛, 徐国财, 等. 纳米银/PAMPS复合材料的微波合成及表征[J]. 复合材料学报,2012,29(3):54.
61 Zhang S H. Progress in synthesis of polymer/inorganic nanocompo-site by gamma-irradiation[J]. Shandong Chem Ind,2006,35(5):21(in Chinese).
张淑红. γ-射线辐射法制备聚合物/无机纳米复合材料的研究进展[J]. 山东化工,2006,35(5):21.
62 Gong Y B. Synthesis and characterization of nanogels via UV-photo- polymerization[D].Shanghai: East China Normal University,2009(in Chinese).
公彦宝, 紫外辐射法合成纳米凝胶[D]. 上海:华东师范大学,2009.
63 Zhuo Y, Du C, et al. One-step synthesis and photoluminescence properties of polycarbazole spheres and Ag/polycarbazole core/shell composites[J]. Eur Polym J,2013,49(6):1365.
64 Tang X N, Tian M W, et al. Application of organic-inorganic nanocomposite materials in the textile finishing[J]. Textile Auxiliaries,2015,32(11):8(in Chinese).
唐晓宁, 田明伟, 等. 有机-无机纳米复合体系在纺织品整理中的应用[J]. 印染助剂,2015,32(11):8.
65 Gao S T, Xing H L, et al. In-situ synthesis of nanosilver/-P(AAEM-St) composites induced by ultrasonic irradiation and their thermal properties[J]. Mater Rev,2015,29(10):61(in Chinese).
高圣涛, 邢宏龙, 等. 超声原位制备纳米银/P (AAEM-St) 复合材料及其热学性能[J]. 材料导报,2015,29(10):61.
66 Zhang J Z, Xu G C, Wang Y L, et al. Charaterization of the structure of Ag-Ga/PMMA nanoparticles[J]. Acta Mater Compos Sin,2007,24(4):67(in Chinese).
章建忠, 徐国财, 王艳丽, 等. 纳米银镓合金/聚甲基丙烯酸甲酯复合粒子的结构表征[J]. 复合材料学报,2007,24(4):67.
67 Zhu J F, Zhu Y J. Microwave-assisted one-step synthesis of polyacrylamide-metal (M= Ag, Pt, Cu) nanocomposites in ethylene glycol[J]. J Phys Chem B,2006,110(17):8593.
68 Biswal J, Misra N, Borde L C, et al. Synthesis of silver nanoparticles in methacrylic acid solution by gamma radiolysis and their application for estimation of dopamine at low concentrations[J]. Radiat Phys Chem,2013,83:67.
69 Borse S, Temgire M, Khan A, et al. Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: Antibacterial efficacy and water treatment[J]. RSC Adv,2016, 6(61):56674.
70 Xu L, Xu G C, et al. Constructure characterization of nano-silver/PVP composites synthesized bi-in situ UV irradiation[J]. Polym Mater Sci Eng,2009,25(12):66(in Chinese).
侯丽, 徐国财,等. 紫外光辐照双原位同步合成纳米 Ag/PVP 复合物的结构特征[J]. 高分子材料科学与工程,2009,25(12):66.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[8] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[9] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[10] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[11] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[12] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[13] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[14] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[15] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed