Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23050156-5    https://doi.org/10.11896/cldb.23050156
  金属与金属基复合材料 |
SiCN@Fe复合吸波涂层高温原位拉伸测试分析
蒋曜年1, 刘欢1, 钟镇涛1, 何泽乾1, 毛卫国1,*, 戴翠英1, 张有为2, 刘平桂2
1 长沙理工大学材料科学与工程学院,长沙 410114
2 中国航发北京航空材料研究院隐身与涂料所,北京 100095
Analysis of SiCN@Fe Composite Wave Absorbing Coatings for High Temperature In-situ Tensile Testing
JIANG Yaonian1, LIU Huan1, ZHONG Zhentao1, HE Zeqian1, MAO Weiguo1,*, DAI Cuiying1, ZHANG Youwei2, LIU Pinggui2
1 College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Stealth & Coatings Institute, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 7644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对SiCN@Fe复合吸波涂层在不同温度下的力学性能进行原位表征分析,为评估该涂层在应用环境下的适配性提供了重要的参考依据。本工作采用空气喷涂法制备了SiCN@Fe复合吸波涂层,采用基于数字图像相关技术的材料高温力学性能原位测试系统表征了SiCN@Fe复合吸波涂层的拉伸断裂行为。结果表明,随温度的升高,涂层的弹性模量逐渐降低,由室温下的54 GPa下降至600 ℃下的47 GPa;涂层的拉伸强度和断裂韧性明显提高,分别由室温下的52.81 MPa和4.65 MPa·m1/2提升至600 ℃下的178 MPa和6.54 MPa·m1/2。SiCN非晶陶瓷在高温环境下的韧性转变和Fe粉填料稳定的骨架结构是SiCN@Fe复合吸波涂层具有良好的拉伸强度和断裂韧性的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋曜年
刘欢
钟镇涛
何泽乾
毛卫国
戴翠英
张有为
刘平桂
关键词:  SiCN聚合物衍生非晶陶瓷  吸波涂层  数字图像相关技术  高温拉伸    
Abstract: In-situ characterization of the mechanical properties of SiCN@Fe composite wave absorbing coating at different temperatures provides an important reference for the application prospects and environment of the coatings. In this work, SiCN@Fe composite wave absorbing coating was prepared by air spraying method, and it's tensile fracture behaviour was characterized by an in-situ test system based on digital image correlation technique. The results showed that, with the increasing of temperature, the elasticity modulus of the coating decreased from 54 GPa at room temperature to 47 GPa at 600 ℃, while the tensile strength and fracture toughness increased significantly from 52.81 MPa and 4.65 MPa·m1/2 at room temperature to 178 MPa and 6.54 MPa·m1/2 at 600 ℃, respectively. The toughness transformation of SiCN amorphous ceramics in high temperature environment and the stable skeleton structure of Fe powder filler are the main reasons for the good tensile strength and fracture toughness of SiCN@Fe composite wave absorbing coating.
Key words:  SiCN polymer derived ceramics    microwave absorbing coatings    digital image related technology    high temperature stretching
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB32  
基金资助: 国家科技重大专项(J2019-VI-0017-0132);国家重点研发计划(2021YFB3702304-4);国防基础科研项目(WDZC20195500501)
通讯作者:  *毛卫国,现任长沙理工大学二级教授,博士研究生导师。长期从事高端装备先进涂层制备及性能评价。ssamao@126.com   
作者简介:  蒋曜年,2019年7月于北华航天工业学院获得工学学士学位。现为长沙理工大学材料科学与工程学院硕士研究生,目前主要研究领域为表面防护材料及应用技术。
引用本文:    
蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
JIANG Yaonian, LIU Huan, ZHONG Zhentao, HE Zeqian, MAO Weiguo, DAI Cuiying, ZHANG Youwei, LIU Pinggui. Analysis of SiCN@Fe Composite Wave Absorbing Coatings for High Temperature In-situ Tensile Testing. Materials Reports, 2025, 39(3): 23050156-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050156  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23050156
1 Shao T, Ma H, Wang J, et al. Journal of Alloys and Compounds, 2020, 832, 154945.
2 Jia Z, Lin K, Wu G, et al. Nano, 2018, 13(6), 1830005.
3 Wang W Q. IEEE Transactions on Geoscience and Remote Sensing, 2016. 54(7), 3764.
4 Jia K, Wang Z, Wang P, et al. Materials Reports, 2021, 35(9), 9133(in Chinese).
贾琨, 王喆, 王蓬, 等. 材料导报, 2021, 35(9), 9133.
5 Chen J, Zheng J, Huang Q, et al. ACS Applied Materials and Interfaces, 2021, 13(30), 36182.
6 Khani O, Shoushtaria M Z, Ackland K, et al. Journal of Magnetism and Magnetic Materials, 2017, 428, 28.
7 Yang Z N, Liu F, Li C L, et al. Materials Reports, 2020, 34(7), 7061 (in Chinese).
杨振楠, 刘芳, 李朝龙, 等. 材料导报, 2020, 34(7), 7061.
8 Li Q, Yin X W, Duan W Y, et al. Journal of the European Ceramic Society, 2014, 34(3), 589.
9 Colombo P, Mera G, Riedel R, et al. Journal of the American Ceramic Society, 2010, 93(7), 1805.
10 Kroke E, Li Y L, Konetschny C, et al. Materials Science and Enginee-ring R, 2000, 26(4), 97.
11 Li Q, Yin X W, Duan W Y, et al. Journal of Alloys and Compounds, 2013, 565, 66.
12 Pang C, Liang D F, Chen H, et al. Electronic Components and Materials, 2018, 37(7), 75 (in Chinese).
庞超, 梁迪飞, 陈慧, 等. 电子元件与材料, 2018, 37(7), 75.
13 Rehman A U, Shaukat S F, Akhtar M N, et al. Ceramics International, 2019, 45(18), 24202.
14 Yin P F, Zhang L M, Wu H J, et al. Nanomaterials, 2019, 9(11), 1601.
15 Huang W H, Zhang X X, Zhao Y N, et al. Carbon, 2020, 167, 19.
16 He Y, Pan S K, Cheng L C, et al. Physics of Metals and Metallography, 2020, 121(3), 19.
17 He Y, Pan S K, Cheng L C, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(15), 12624.
18 Liu Y, Lin X, Gong H Y, et al. Journal of Alloys and Compounds, 2018, 771, 356.
19 Wang S, Mao J J, Liu Y, et al. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012047.
20 Liu M Y, Wang G T, MiaoY L, et al. International Journal of Applied Ceramic Technology, DOI:10. 1111/ijac. 14395.
21 Wang Y Z, Guo X, Feng Y R, et al. Ceramics International, 2017, 43(17), 15551.
22 Lin X, Gong H Y, Chen Z W, et al. Ceramics International, DOI:10. 1016/j. ceramint. 2023. 04. 226.
23 Chen Y, Zhang R, Zhang G, et al. International Journal of Thermophysics, 2021, 42(5), 69.
24 ASTME1876-15. Standard test method for dynamic young's modulus, shear modulus, and poisson's ratio by impulse excitation of vibration. Annual Book of ASTM Standards. 2015.
25 Tan Z G, Zhao L X. Mechanics in Engineering, 2000(1), 58. (in Chinese).
谈志高, 赵秀丽. 力学与实践, 2000(1), 58.
26 Lu Y Z, Yang Y Z, Zheng L S. Rock and Soil Mechanics, 2003(S2), 207(in Chinese).
陆有忠, 杨有贞, 郑璐石. 岩土力学, 2003(S2), 207.
27 Zhu Q F, Shao B L, Liu A S, et al. Rare Metals, 2002 (5), 56(in Chinese).
朱其芳, 邵贝羚, 刘安生, 等. 稀有金属, 2002 (5), 56.
28 Gu X, Wu Z X. Engineering Mechanics, 2008(7), 43(in Chinese).
顾乡, 吴志学. 工程力学, 2008(7), 43.
29 Wang D, Guo X, Li P F, et al. Acta Chimica Sinica, 2022, 80(6), 734(in Chinese).
王丹, 郭香, 李鹏飞, 等. 化学学报, 2022, 80(6), 734.
30 Morcos R M, Navrotsky A, Varga T, et al. Journal of the American Ceramic Society, 2008, 91(7), 2391.
31 Xiao F Y, Zhang Z B, Zeng F, et al. Ceramics International, 2014, 40(1), 745.
[1] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[2] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[3] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[4] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[5] 米俊龙, 贾涓, 宋新莉, 王凯, 徐庭栋. 变形条件对C-Mn钢力学性能的影响机理[J]. 材料导报, 2021, 35(22): 22146-22150.
[6] 王翊, 郭顺德, 刘元军, 赵晓明. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17): 17178-17184.
[7] 邹田春, 秦嘉徐, 李龙辉, 符记, 刘志浩, 牟浩蕾. 钛合金-芳纶纤维复合材料单搭接接头渐进失效分析[J]. 材料导报, 2020, 34(20): 20143-20146.
[8] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[9] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed