Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22146-22150    https://doi.org/10.11896/cldb.20090344
  金属与金属基复合材料 |
变形条件对C-Mn钢力学性能的影响机理
米俊龙1, 贾涓1, 宋新莉1, 王凯2, 徐庭栋2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 钢铁研究总院,北京 100081
Influence Mechanism of Deformation Conditions on Mechanical Properties of C-Mn Steel
MI Junlong1, JIA Juan1, SONG Xinli1, WANG Kai2, XU Tingdong2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 General Institute of Iron and Steel Research, Beijing 100081, China
下载:  全 文 ( PDF ) ( 3521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 借助Gleeble 3500热模拟试验机和Instron 8801试验机对一种C-Mn试验钢进行了高温和室温拉伸试验,测量和计算了试验钢的力学性能,观察了断口形貌和显微组织,分析其力学性能随拉伸温度和应变速率变化的规律及机理。结果表明:随拉伸温度的升高和应变速率的减小,试验钢的屈服强度和抗拉强度逐渐降低,屈强比呈上升趋势;而断面收缩率在720 ℃出现极小值,随应变速率的增加逐渐增大。温度和应力作用引发的杂质原子的非平衡晶界偏聚影响着试验钢的塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米俊龙
贾涓
宋新莉
王凯
徐庭栋
关键词:  C-Mn钢  高温拉伸  力学性能  非平衡晶界偏聚    
Abstract: Akind of C-Mn tested steel was tested at high temperature and room temperature by the Gleeble 3500 thermal simulation testing machine and the Instron 8801 testing machine. The mechanical properties of the tested steel were measured and calculated, the fracture morphology and microstructure were observed, and the change rule and mechanism of mechanical properties with tensile temperature and strain rate were analyzed. The results show that, with the increase of tensile temperature and the decrease of strain rate, the yield strength and tensile strength of the tested steel gradually decrease, and the yield ratio has an upward trend. The reduction of area appears a minimum at 720 ℃, and it increases with the increase of strain rate. The non-equilibrium grain boundary segregation of impurity atoms caused by temperature and stress affects the plasti-city of the tested steel.
Key words:  C-Mn steel    stretching at elevated temperature    mechanical property    non-equilibrium grain boundary segregation
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51871064)
通讯作者:  queenyjj@hotmail.com   
作者简介:  米俊龙,武汉科技大学硕士,主要从事金属拉伸力学性能和机理研究。
贾涓,武汉科技大学教授,硕士研究生导师,擅长金属、高分子等各种晶体材料的织构分析与研究。主要从事材料强韧化及各向异性的研究,发表教学科研论文30余篇。
引用本文:    
米俊龙, 贾涓, 宋新莉, 王凯, 徐庭栋. 变形条件对C-Mn钢力学性能的影响机理[J]. 材料导报, 2021, 35(22): 22146-22150.
MI Junlong, JIA Juan, SONG Xinli, WANG Kai, XU Tingdong. Influence Mechanism of Deformation Conditions on Mechanical Properties of C-Mn Steel. Materials Reports, 2021, 35(22): 22146-22150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090344  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22146
1 ISO 6892-2: 2018, Metallic materials-tensile testing-part 2: method of test at elevated temperature. Switzerland, 2018.
2 Lu C Z, Li J Y, Gao Z J, et al. Materials Reports A: Review Papers, 2018, 32(5), 1639(in Chinese).
卢成壮, 李静媛, 高智君, 等. 材料导报:综述篇, 2018, 32(5), 1639.
3 Kumar G D C, Kumar V A, Gupta R K, et al. Metallurgicaland Mate-rials Transactions A, 2019, 50A(1), 161.
4 Rayes M M E, El-Danaf E A. Materials Science & Engineering A, 2017, 697, 203.
5 Huang Y C, Lin Y C, Deng J, et al. Materials and Design, 2014, 53, 349.
6 Luo L, Li L R, Huang L Y, et al. Hot Working Technology, 2014, 43(10), 79(in Chinese).
罗龙, 李丽荣, 黄丽颖, 等. 热加工工艺, 2014, 43(10), 79.
7 Guo X F, Weng X X, Jiang Y, et al. High Temperature Materials and Processes, 2017, 36(9), 913.
8 Choudhary B K, Christopher J. International Journal of Pressure Vessels and Piping, 2019, 171, 153.
9 Aghaie-Khafri M, Zargaran A. Materials Science and Engineering A, 2010, 527, 4727.
10 Suzuki H G. ISIJ International, 1997, 37(3), 250.
11 Nagasaki C, Aizawa A, Kihara J. Transactions ISIJ, 1987, 27, 506.
12 Kang D T, Guo C X. Atlas of microstructure transformation and properties of engineering steel, China Machine Press, China, 1992(in Chinese).
康大韬, 郭成熊. 工程用钢的组织转变与性能图册, 机械工业出版社, 1992.
13 Lin H G, Fu D Z. Austenite transformation diagram of steel: principle, testing and application, China Machine Press, China, 1988(in Chinese).
林慧国, 傅代直. 钢的奥氏体转变曲线: 原理, 测试与应用, 机械工业出版社, 1988.
14 Sen D D. Effects of grain boundary segregated phosphorus on hot ductility and temper embrittlement of 2.25Cr-1.0Mo steel. Master's Thesis, Wuhan University of Science and Technology, China, 2002(in Chinese).
沈冬冬. 磷的晶界偏聚对2.25Cr-1.0Mo钢热塑性及回火脆性的影响. 硕士学位论文, 武汉科技大学, 2002.
15 Xu T D. Kinetics of non-equilibrium grain boundary segregation and intergranular brittle fracture: mechanism of uncertainty in tensile mechanical properties testing, Science Press, China, 2017(in Chinese).
徐庭栋. 非平衡晶界偏聚动力学和晶间脆性断裂: 含拉伸力学性能测试不确定性机理, 科学出版社, 2017.
16 Xu T D. Journal of Materials Science, 2002, 35, 5621.
17 Xu T D, Cheng B Y. Progress in Materials Science, 2004, 49, 109.
18 Xu T D, Yu H Y, Liu Z J, et al. Measurement, 2015, 66, 1.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed