Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22090130-6    https://doi.org/10.11896/cldb.22090130
  金属与金属基复合材料 |
Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化
董书琳1, 曲迎东1,*, 陈瑞润2,*, 郭景杰2, 王琪2, 李广龙1, 张伟1, 于波3
1 沈阳工业大学材料科学与工程学院,沈阳 110870
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
3 沈阳铸造研究所有限公司高端装备轻合金铸造技术国家重点实验室,沈阳110027
Low-temperature Superplasticity and High-temperature Tensile Microstructure Evolution of Ti-44Al-6Nb-2Fe Alloy
DONG Shulin1, QU Yingdong1,*, CHEN Ruirun2,*, GUO Jingjie2, WANG Qi2, LI Guanglong1, ZHANG Wei1, YU Bo3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3 State Key Laboratory of Light Alloy Casting Technology for High-end Equipment, Shenyang Research Institute of Foundry Co., Ltd., Shenyang 110027, China
下载:  全 文 ( PDF ) ( 27621KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善高Nb TiAl基合金的热变形能力,本研究利用Fe部分替代高Nb TiAl基合金中的Nb,熔炼制备新型高Nb含Fe的Ti-44Al-6Nb-2Fe合金。首先对合金铸锭进行包套锻造,再对锻造合金在800~1 000 ℃、1×10-4 s-1初始应变速率下进行高温拉伸实验,对合金的高温拉伸变形行为和组织演化行为进行研究。结果表明,合金中含有较多B2相,占30%~40%,随高温拉伸温度升高,合金动态再结晶作用增强,位错减少,晶粒尺寸增大,晶粒长径比降低,这些组织演化特征与合金的应力-应变状态和热变形能力提升相对应。合金在800 ℃和850 ℃拉伸变形时,B2相为硬脆相,B2相及B2/γ相界面处的应力集中导致该区域形成大量裂纹及孔洞(800 ℃时孔洞百分比为14.5%),延伸率较低(800 ℃时延伸率为123.1%),甚至发生提早断裂,试样断裂处颈缩现象明显;合金在900 ℃拉伸变形时,应变速率敏感指数m=0.284,延伸率明显提高(900 ℃时延伸率为163.0%),试样断裂处仍有颈缩现象;合金在950 ℃和1 000 ℃拉伸变形时,B2相转化为“软”相,发挥了很好的应力-应变协调作用,B2相与γ相之间发生了广泛的晶界滑动,组织中几乎无裂纹孔洞出现,延伸率陡然提高(950 ℃时延伸率为307.9%),试样断裂处无颈缩现象,合金具备超塑性,但该合金在TiAl基合金中属于低温超塑性。较高的B2相含量及其所发挥的优异的应力-应变协调作用是该合金具备低温超塑性的重要原因和特色之处。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董书琳
曲迎东
陈瑞润
郭景杰
王琪
李广龙
张伟
于波
关键词:  钛铝基合金  高温拉伸  超塑性  组织演化  电子背散射衍射    
Abstract: In order to improve the hot deformation processing capability of high-Nb TiAl based alloys, this study used the Fe element to partly replace the Nb element in high-Nb TiAl based alloys to prepare the new-type high-Nb and Fe-contained Ti-44Al-6Nb-2Fe alloy. The alloy ingot was firstly isothermally package forged, and then the high-temperature tensile testing was carried out on this forged alloy at the initial strain rate of 1×10-4 s-1 and temperatures of 800—1 000 ℃, and the high-temperature tensile deformation behavior and microstructure evolution behavior of the alloy were studied. The results show that the alloy contains more B2 phases(30%—40%). With the increasing of temperature, the dynamic recrystallization effect increases, dislocation decreases, grain size increases, and aspect ratio of grains decreases, all of which correspond to the stress-strain state and enhancement of hot deformation processing capability of the alloy. When the tensile testing is at 800 ℃ and 850 ℃, B2 phase is a brittle phase, and the stress concentration in the regions of B2 phase and B2/γ phase interface leads to the formation of a large number of cracks and holes (14.5% cavity at 800 ℃), resulting in a low elongation (123.1% elongation at 800 ℃), even the early fracture, and the neck shrinkage is obvious. When the tensile testing is at 900 ℃, the strain-rate sensitive exponent m is 0.284, the elongation is significantly increased (163.0%), and the neck shrinkage still exists. When the tensile testing is at 950 ℃ and 1 000 ℃, B2 phase has transformed into a ‘soft’ phase that plays a good role in stress-strain coordination effect, and extensive grain boundary sliding between B2 phase and γ phase can be found. There are almost no cracks and holes in the microstructure, and the elongation increases sharply (307.9% at 950 ℃) without neck shrinkage. The alloy has superplasticity at 950 ℃ and 1 000 ℃, which belongs to low-temperature superplasticity for TiAl based alloys. The higher content of B2 phase and its excellent stress-strain coordination effect are the important reasons and characteristics for the alloy yielding the low-temperature superplasticity.
Key words:  TiAl based alloy    high-temperature tensile    superplasticity    microstructure evolution    EBSD
发布日期:  2024-01-16
ZTFLH:  TG146.2  
基金资助: 高端装备铸造技术全国重点实验室开放课题(CAT2023-008);辽宁省教育厅面上项目(LJKMZ20220464);辽宁省自然科学基金(2020-KF-14-03);高端装备轻合金铸造技术国家重点实验室项目(LACT-009)
通讯作者:  曲迎东,沈阳工业大学材料科学与工程学院教授、博士研究生导师。1997年7月于鞍山钢铁学院获得学士学位;2000年3月于东北大学获得硕士学位;2003年10月于哈尔滨工业大学获得博士学位。主要从事金属基碳纤维复合材料制备工艺、喷射成形工艺及高性能合金开发、超细长孔新材料铸造制备新技术、高性能球墨铸铁材料开发等方面的研究工作。发表论文120余篇。quyingdong@163.com;
陈瑞润,哈尔滨工业大学材料科学与工程学院教授、博士研究生导师,国家杰出青年基金获得者。1999年7月于山东工业大学获得学士学位;2001年7月和2005年4月于哈尔滨工业大学分别获得硕士学位和博士学位。主要从事Ti合金、高熵合金、Nb-Si基合金、特殊材料等的电磁熔炼与凝固方面的相关研究。发表SCI收录论文300余篇。ruirunchen@hit.edu.cn   
作者简介:  董书琳,沈阳工业大学材料科学与工程学院副教授、硕士研究生导师、博士研究生副导师。2009年7月、2012年1月于辽宁工程技术大学分别获得学士学位和硕士学位;2016年1月于哈尔滨工业大学获得博士学位。2016年7月—2022年7月,东北大学EPM教育部重点实验室讲师、硕士研究生导师、特聘副研究员;2022年8月调入沈阳工业大学材料科学与工程学院。主要从事Ti及TiAl基合金、高熵合金等材料的凝固和热变形组织性能调控等方面的研究。以第一作者及通信作者发表论文17篇。
引用本文:    
董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
DONG Shulin, QU Yingdong, CHEN Ruirun, GUO Jingjie, WANG Qi, LI Guanglong, ZHANG Wei, YU Bo. Low-temperature Superplasticity and High-temperature Tensile Microstructure Evolution of Ti-44Al-6Nb-2Fe Alloy. Materials Reports, 2024, 38(1): 22090130-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090130  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22090130
1 Chen G, Peng Y B, Zheng G, et al. Nature Materials, 2016, 15, 876.
2 Yang G, Tian P J, Ge Z H, et al. Materials Reports, 2020, 34, 08113 (in Chinese).
杨光, 田普建, 葛正浩, 等. 材料导报, 2020, 34, 08113.
3 Zheng G M, Tang B, Zhao S K, et al. Acta Materialia, 2022, 225, 117585.
4 Dong S L, Chen R R, Guo J J, et al. Materials and Design, 2015, 84, 118.
5 Zhang S Z, Kong F T, Chen Y Y, et al. Intermetallics, 2012, 27, 31.
6 Yang J R, Chen R R, Ding H S, et al. Applied Thermal Engineering, 2013, 59, 69.
7 Yang J R, Chen R R, Su Y Q, et al. Energy, 2018, 161, 143.
8 Niu H Z, Tong R L, Chen X J, et al. Materials Science and Engineering A, 2021, 801, 140438.
9 Gao Y L, Kou S Q, Dai J N, et al. Materials Science and Engineering A, 2021, 823, 141772.
10 Guo R Q, Wang X Q, Liu G H, et al. Materials Reports, 2022, 36(S1), 22010111 (in Chinese).
郭瑞琪, 王秀琦, 刘国怀, 等. 材料导报, 2022, 36(S1), 22010111.
11 Song L, Appel F, Wang L, et al. Acta Materialia, 2020, 186, 575.
12 Tan Y M, Fang H Z, Cui H Z, et al. Materials Science and Engineering A, 2020, 797, 140098.
13 Weiss I, Semiatin S L. Materials Science and Engineering A, 1999, 263, 243.
14 Weiss I, Semiatin S L. Materials Science and Engineering A, 1998, 243, 46.
15 Du Z X, He Q W, Chen R R, et al. Journal of Materials Science and Technology, 2022, 104, 183.
16 Sun F S, Cao C X, Kim S E, et al. Metallurgical and Materials Transactions A, 2001, 32A, 1573.
17 Nazarova T I, Imayev V M, Imayev R M, et al. Intermetallics, 2017, 82, 26.
18 Shu S L, Qiu F, Tong C Z, et al. Journal of Alloys and Compounds, 2014, 617, 302.
19 Izumi T, Yoshioka T, Hayashi S, et al. Intermetallics, 2001, 9, 547.
20 Gao S B, Xu X J, Shen Z Z, et al. Materials Science and Engineering A, 2016, 677, 89.
21 Wang Q, Chen R R, Gong X, et al. Intermetallics, 2018, 94, 152.
22 Chen R R, Dong S L, Guo J J, et al. Materials and Design, 2016, 89, 492.
23 Chen R R, Liu Y L, Xue X, et al. Materials Science & Engineering A, 2021, 809, 140912.
24 Zan X, He Y H, Wang Y, et al. Journal of Materials Science, 2010, 45, 6446.
[1] 米俊龙, 贾涓, 宋新莉, 王凯, 徐庭栋. 变形条件对C-Mn钢力学性能的影响机理[J]. 材料导报, 2021, 35(22): 22146-22150.
[2] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[3] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[4] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[5] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[6] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[7] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed