Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22090102-6    https://doi.org/10.11896/cldb.22090102
  无机非金属及其复合材料 |
协同连续布筋增韧喷射3D打印混凝土的抗弯性能
刘雄飞1,2,*, 侯冠宇1,2, 蔡华崇1,2, 李之建1,2
1 河北工业大学土木与交通学院,天津 300401
2 建筑3D打印河北省工程研究中心,天津300401
Flexural Performance of Spray-based 3D Printed Concrete with Continuous Micro-cable
LIU Xiongfei1,2,*, HOU Guanyu1,2, CAI Huachong1,2, LI Zhijian1,2
1 School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
2 Engineering Research Center on 3D Construction Printing of Hebei, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 13371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喷射3D打印喷口与受喷面的间距空间可解决3D打印和钢筋协同建造的问题。本工作基于协同连续布筋和喷射3D打印混凝土工艺,提出喷射3D打印微筋混凝土的设计方法,研究了不同微筋直径(0.6、0.8、1.0 mm)和根数(1—4)对喷射3D打印微筋混凝土抗弯性能的影响规律。试验结果表明,微筋可显著提升打印混凝土的抗弯强度和韧性,对比未增强组(D0试样),喷射3D打印微筋混凝土的抗弯强度和弯曲位移分别最高提升了800%和2 076.47%。此外,基于喷射3D打印的高速喷压和逐层打印特性,微筋与喷射混凝土界面粘结密实,进一步保证了喷射3D打印微筋混凝土的抗弯性能和结构整体性。本工作打印了尺寸为1 300 mm (Z)×800 mm (X)×86 mm (Y)的异形火炬结构,验证了喷射3D打印微筋混凝土系统的实用性,为3D打印钢筋混凝土结构的制备及在大尺寸结构中的应用提供了一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雄飞
侯冠宇
蔡华崇
李之建
关键词:  喷射3D打印  协同布筋  抗弯性能  韧性    
Abstract: The distance between the spray nozzle and the print substrate can effectively solve the co-construction problem of 3D printing and reinforcement. In this work, a design method of spray-based 3D printed micro-cable reinforced concrete was proposed based on the collaborative continuous reinforcement and sprayed-based 3D printing concrete technologies. The effects of different reinforcement diameter (0.6, 0.8, 1.0 mm) and number (1—4) on the flexural performance of spray-based 3D printed micro-cable reinforced concrete were comprehensively studied. The test results show that the micro-cable can significantly improve the flexural strength and ductility of the printed concrete. Compared with the unreinforced group (D0 sample), the flexural strength and displacement of the printed micro-cable reinforced concrete are enhanced by 800% and 2 076.47%, respectively. In addition, based on the high-speed spraying pressure and layer-by-layer printing characteristics of spray-based 3D printing, the interface between the micro-cable and concrete is bonded firmly and compactly, which further ensures the flexural performance and structural integrity of spray-based 3D printed micro-cable concrete. To verify the practicability of the spray-based 3D printed micro-cable reinforced concrete system, a special-shaped torch structure with the size of 1 300 mm (Z)×800 mm (X)×86 mm (Y) is printed, which provides a certain reference for the preparation and application of 3D printed reinforced concrete structures in large scale.
Key words:  spray-based 3D printing    continuous micro-cable reinforcement    flexural behavior    ductility
发布日期:  2024-01-16
ZTFLH:  TU512.4  
基金资助: 国家自然科学基金(52278252;51908182;52108205);河北省自然科学基金(E2020202043;E2022202041;D2020202008)
通讯作者:  刘雄飞,博士,副教授,河北工业大学元光学者,土木与交通学院实验室副主任。2018年7月毕业于北京工业大学。河北省“巨人计划”创新团队成员,河北省电磁环境技术创新中心客座研究员,中国硅酸盐学会水泥基流变测试技术专家委员会委员。主持国家级、省部级自然科学基金项目3项,主持预研装备重点实验室基金军工项目1项。主要研究方向包括3D打印、电磁防护材料与结构。liuxfking@foxmail.com   
引用本文:    
刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
LIU Xiongfei, HOU Guanyu, CAI Huachong, LI Zhijian. Flexural Performance of Spray-based 3D Printed Concrete with Continuous Micro-cable. Materials Reports, 2024, 38(1): 22090102-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090102  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22090102
1 Kreiger E L, Kreiger M A, Case M P. Additive Manufacturing, 2019, 28, 39.
2 Salet T A, Ahmed Z Y, Bos F P, et al. Virtual Physical Prototyping, 2018, 13(3), 222.
3 Ma G, Li Z, Wang L, et al. Materials Letters, 2019, 235, 144.
4 Ma G, Li Z, Wang L, et al. Construction and Building Materials, 2019, 202, 770.
5 Bai G, Wang L, Ma G, et al. Cement and Concrete Composites, 2021, 120, 104037.
6 Vantyghem G, De Corte W, Shakour E, et al. Automation in Construction, 2020, 112, 103084.
7 Asprone D, Auricchio F, Menna C, et al. Construction and Building Materials, 2018, 165, 218.
8 Wang L, Ma G, Liu T, et al. Cement and Concrete Research, 2021, 148, 106535.
9 Li Z, Wang L, Ma G. Composites Part B:Engineering, 2020, 187, 107796.
10 Lim J H, Panda B, Pham Q C. Construction and Building Materials, 2018, 178, 32.
11 Li Z J, Ma G W, Wang L. Jounal of Experimantal Mechanics, 2021, 36(8), 1001 (In Chinese).
李之建, 马国伟, 王里. 实验力学, 2021, 36(8), 1001.
12 Bos F P, Kruger P, Lucas S S, et al. Cement Concrete Composites, 2021, 120, 104024.
13 Muthukrishnan S, Ramakrishnan S, Sanjayan J J C, et al. Cement Concrete Composites, 2021, 122, 104144.
14 Heidarnezhad F, Zhang Q. Construction and Building Materials, 2022, 323, 126545.
15 Bai G, Wang L, Ma G, et al. Cement Concrete Composites, 2021, 120, 104037.
16 Lu B, Li M, Wong T N, et al. Automation in Construction, 2021, 124, 103570.
17 Liu X, Li Q, Wang L, et al. Cement Concrete Composites, 2022, 133, 104688.
18 Liu X, Li Q, Li J. Materials Letters, 2022, 319, 132253.
19 Kloft H, Krauss H W, Hack N, et al. Cement and Concrete Research, 2020, 134, 106078.
20 Lu B, Li M, Lao W, et al. In:Proceedings of the 2018 International So-lid Freeform Fabrication Symposium. University of Texas at Austin, Austin, 2018.
21 Lu B, Li M, Leong K F, et al. In:Proceedings of the International Conference on Progress in Additive Manufacturing. Nanyang Technological University, Singapore, 2018, pp. 38.
22 Lu B, Qian Y, Li M, et al. Construction and Building Materials, 2019, 211, 1073.
23 Lu B, Zhu W, Weng Y, et al. Journal of Cleaner Production, 2020, 258, 120671.
24 Lindemann H, Gerbers R, Ibrahim S, et al. In:Proceedings of the RILEM International Conference on Concrete and Digital Fabrication. Springer, Cham, 2018, pp. 287.
25 Bos F P, Ahmed Z Y, Jutinov E R, et al. Materials, 2017, 10(11), 1314.
26 Xiao J, Chen Z, Ding T, et al. Cement and Concrete Composites, 2022, 125, 104313.
27 Bažant Z P, Kazemi M T. International Journal of Fracture, 1991, 51(2), 121.
28 Zhou J, Hou G, Liu X, et al. In:Proceedings of the International Confe-rence on Green Building, Civil Engineering and Smart City. Springer, Singapore, 2023, pp. 934.
[1] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[2] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[5] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[6] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[7] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[8] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[9] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[10] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[11] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[12] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[13] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[14] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[15] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed