Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23090208-7    https://doi.org/10.11896/cldb.23090208
  金属与金属基复合材料 |
P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响
李文清1,2, 马景平1,2, 曹睿1,2,*, 徐晓龙3, 杨飞3, 毛兴贵3, 蒋勇3, 闫英杰1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 四川大西洋焊接材料股份有限公司,四川 自贡 643000
Effect of Different Degree of Carbide Aggregation in P91 Steel Weld Metal on the Impact Toughness of Weld Metal
LI Wenqing1,2, MA Jingping1,2, CAO Rui1,2,*, XU Xiaolong3, YANG Fei3, MAO Xinggui3, JIANG Yong3, YAN Yingjie1,2
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Atlantic China Welding Consumables, INC, Zigong 643000, Sichuan, China
下载:  全 文 ( PDF ) ( 5501KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用夏比冲击试验、SEM扫描电镜和 EBSD分析等方法研究了在P91钢焊缝金属微观组织中晶界处碳化物的聚集程度差异对焊缝金属冲击韧性的影响。结果表明:焊态与热处理态下P91钢焊缝金属微观组织不同,焊态下组织为未回火板条马氏体组织,热处理态为铁素体组织。碳化物沿着晶界呈颗粒链的形式聚集,在碳化物周围观察到了微孔及微孔聚集的现象。碳化物颗粒在力的作用下发生应力集中,在碳化物周围形成微孔,晶界处碳化物颗粒链聚集程度越高,则微孔体积分数越高,微孔快速聚集到一起形成裂纹,导致冲击韧性降低。基体中析出相呈弥散分布,析出相数量越多,基体弥散强化效果越显著,冲击韧性降低。EBSD实验结果表明,晶界处分布着大量M23C6型碳化物,基体中也有少量的M23C6型碳化物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文清
马景平
曹睿
徐晓龙
杨飞
毛兴贵
蒋勇
闫英杰
关键词:  P91耐热钢  冲击韧性  碳化物    
Abstract: The impact toughness of P91 weld metal was studied by using impact testing, SEM and EBSD testing to investigate the effect of different degrees of carbide aggregation at grain boundaries in the microstructure of the weld metal. The results indicate that the microstructure of as welded state is different from that of heat treated state. The microstructure of as welded state is untempered flat noodles martensite, while that of heat treated state is ferrite. Carbides aggregate in the form of particle chains along grain boundaries, and the phenomenon of micropores and their aggregation around the carbides has been observed. Under the action of force, carbide particles undergo stress concentration, forming micropores around the carbide. The higher the degree of aggregation of carbide particle chains at grain boundaries, the higher the volume fraction of micropores, and the rapid aggregation of micropores to form cracks, resulting in a decrease in impact toughness. The precipitates in the matrix exhibit a dispersed distribution, and the more precipitates there are, the more significant the dispersion strengthening effect of the matrix is, and the impact toughness decreases. The EBSD results indicate that a large amount of M23C6 type carbides are distributed at the grain boundaries, and there is also a small amount of M23C6 type carbides in the matrix.
Key words:  P91 heat-resistant steel    impact toughness    carbides
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG441  
基金资助: 国家自然科学基金(52175325;51961024;52071170);甘肃省科技重大专项(22ZD6GA008)
通讯作者:  * 曹睿,博士,兰州理工大学教授、博士研究生导师。获得甘肃省飞天学者和四川省天府学者特聘教授。2003年6月兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料和异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文120余篇,完成著作2部。完成国家自然科学基金项目、甘肃省科研项目以及企业合作项目40余项。caorui@lut.edu.cn   
作者简介:  李文清,2020年6月毕业于兰州工业学院,获得工学学士学位,2023年6月毕业于兰州理工大学,获得工学硕士学位。现在曹睿老师的指导下进行课题研究,目前研究领域主要为焊缝金属强韧化的研究。
引用本文:    
李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
LI Wenqing, MA Jingping, CAO Rui, XU Xiaolong, YANG Fei, MAO Xinggui, JIANG Yong, YAN Yingjie. Effect of Different Degree of Carbide Aggregation in P91 Steel Weld Metal on the Impact Toughness of Weld Metal. Materials Reports, 2024, 38(20): 23090208-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090208  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23090208
1 Zhang J B, Liu F, Xue F. Materials Reports, 2018, 32 (8), 1318 (in Chinese).
张建斌, 刘帆, 薛飞. 材料导报, 2018, 32(8), 1318.
2 Mishnev R, Dudova N, Dudko, et al. Materials Science and Enginee-ring:A, 2018, 730, 1.
3 Li L. Materials Characterization, 2020, 159, 110025.
4 Yu X, Babu S S, Terasaki H, et al. Acta Materialia, 2013, 61(6), 2194.
5 Sikora E, Macdonald D D. Electrochimica Acta, 2003, 48(1), 69
6 Zheng L G, Hu X Q, Kang X H, et al. Acta Metallurgica Sinica, 2013, 49 (9), 8(in Chinese).
郑雷刚, 胡小强, 康秀红, 等. 金属学报, 2013, 49(9), 8.
7 Li J, Zhang C, Jiang B, et al. Journal of Alloys and Compounds, 2016, 685, 248.
8 Zhao J, Zhong W L, Wang W, et al. Transactions of Materials and Heat Treatment, 2013, 34 (1), 6(in Chinese).
赵君, 钟万里, 王伟, 等. 材料热处理学报, 2013, 34(1), 6.
9 Pandey C. Materials Research Express, 2019, 6, 096541.
10 Pandey C, Mahapatra M M, Kumar P, et al. Journal of Materials Processing Technology, 2018, 731, 249.
11 Hurtado-Noreña C, Danón C A, Luppo M I, et al. Procedia Materials Science, 2015, 8, 1089.
12 Pandey C, Mahapatra M M. Journal of Materials Engineering & Performance, 2016, 25(6), 2195.
[1] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[2] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[3] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[4] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[5] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[6] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[7] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[8] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[9] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[10] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[11] 杨道宽, 仇念双, 左小伟. 铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响[J]. 材料导报, 2023, 37(17): 22030246-8.
[12] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[13] 韩成, 曹睿. 硼在钢中的作用及表征方式[J]. 材料导报, 2022, 36(Z1): 21080164-4.
[14] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[15] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed