Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23090058-12    https://doi.org/10.11896/cldb.23090058
  新型高性能磷酸镁胶凝材料 |
超高韧性磷酸镁水泥基复合材料压缩力学性能研究
冯虎1, 闵智爽1, 郭奥飞1,*, 朱必洋1,2, 陈兵3, 黄昊4
1 郑州大学土木工程学院,郑州 450001
2 同济大学材料科学与工程学院,上海 201804
3 上海交通大学船舶海洋与建筑工程学院,上海 200240
4 中国水利水电科学研究院,北京 100038
Study on Mechanical Properties of Ultra-high Toughness Magnesium Phosphate Cement-based Composites Under Compression
FENG Hu1, MIN Zhishuang1, GUO Aofei1,*, ZHU Biyang1,2, CHEN Bing3, HUANG Hao4
1 School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
3 School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 China Institute of Water Resources and Hydropower Research, Beijing 100038, China
下载:  全 文 ( PDF ) ( 34262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸镁水泥(Magnesium phosphate cement,MPC)是一种具有凝结时间短、早期强度高、粘结性能好等诸多优点的新型无机胶凝材料,但材料本身具有脆性性质,应变能力低。工程水泥基复合材料(Engineered cementitious composites,ECC)是通过在水泥基复合材料中添加高性能纤维制备而成。通过纤维增韧技术,可以制备出同时具备MPC和ECC优良特性的超高韧性磷酸镁水泥基复合材料(Ultra-high toughness magnesium phosphate cement-based composites,UHTMC)。本工作通过拉伸试验证实了UHTMC具有优异的拉伸力学性能、应变硬化和多缝开裂特征。通过试件的轴心抗压强度、极限压应变、受压弹性模量和泊松比分析了粉煤灰(Fly ash,FA)替代量(0%、15%、30%和45%)和养护龄期(14 d和28 d)对UHTMC压缩力学性能的影响规律。结果表明,UHTMC试件表现出良好的压缩韧性,随着粉煤灰替代量的增加和养护龄期的延长,试件的轴心抗压强度和受压弹性模量升高,但极限压应变降低,泊松比变化较小。通过对UHTMC的轴心受压应力-应变全曲线进行分析,提出和建立了轴心受压本构关系模型。最后,从微观层面上分析了粉煤灰替代量和养护龄期影响UHTMC宏观压缩力学性能的机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯虎
闵智爽
郭奥飞
朱必洋
陈兵
黄昊
关键词:  磷酸镁水泥  粉煤灰  超高韧性  压缩性能  本构关系    
Abstract: Magnesium phosphate cement (MPC) is a new type of inorganic cementitious material with many advantages such as short setting time, high early strength and good bonding performance. However, MPC-based composite materials have brittle properties and low strain capacity. Engineered cementitious composites (ECC) is prepared by using high-performance fibers to improve the toughness of cement-based composites. Through fiber toughening technology, ultra-high toughness magnesium phosphate cement-based composites (UHTMC) with excellent properties of MPC and ECC can be prepared. Here, through the axial tensile test, it is confirmed that the UHTMC has excellent tensile performance, strain hardening and obvious multi-cracking behavior. The effects of fly ash (FA) (substitution amounts:0%, 15%, 30% and 45%) and curing ages (14 d and 28 d) on the mechanical properties of UHTMC under compression were analyzed by the axial compressive strength, ultimate compressive strain, compressive elastic modulus and Poisson's ratio of the specimens. The results show that the UHTMC specimens exhibit good compressive toughness. With the increase of FA substitution amount and curing age, the axial compressive strength and compressive elastic modulus also increase, but the ultimate compressive strain decreases, and the Poisson's ratio changes little. Through the axial compression stress-strain curve of UHTMC, the constitutive relation model of axial compression is proposed and established. Finally, the influence mechanism of FA substitution amount and curing age on the macroscopic mechanical properties of UHTMC under compression was analyzed at the micro level.
Key words:  magnesium phosphate cement    fly ash    ultra-high toughness    compression property    constitutive relation
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528  
基金资助: 中国水科院基本科研业务费项目(SM0145B042021);中国博士后科学基金项目(2021M702954); 河南省自然科学基金项目(222300420314);国家自然科学基金项目(52178258)
通讯作者:  *郭奥飞,郑州大学土木工程学院副研究员、硕士研究生导师。2013年6月和2016年6月分别于河南工业大学和湖南大学获得工学学士学位和硕士学位,2020年12月于美国路易斯维尔大学获工学博士学位。目前主要从事木质纤维素生物质对水泥基材料性能影响的研究工作,以第一或通信作者发表SCI论文20余篇,包括Cement and Concrete Composites,Industrial Crops and Products、Construction and Building Materials等期刊。a0guo003@zzu.edu.cn   
作者简介:  冯虎,郑州大学土木工程学院教授、博士研究生导师。2004年6月和2007年6月于郑州大学获得工学学士学位和硕士学位,2010年10月于同济大学获工学博士学位。目前主要从事绿色纤维复合建筑材料与结构方面的研究工作,以第一或通信作者发表SCI论文40余篇,包括Cement and Concrete Composites、Construction and Building Materials等期刊。
引用本文:    
冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
FENG Hu, MIN Zhishuang, GUO Aofei, ZHU Biyang, CHEN Bing, HUANG Hao. Study on Mechanical Properties of Ultra-high Toughness Magnesium Phosphate Cement-based Composites Under Compression. Materials Reports, 2024, 38(17): 23090058-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090058  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23090058
1 Chau C K, Qiao F, Li Z J. Construction and Building Materials, 2011, 25, 2911.
2 Mestres G, Ginebra M P. Acta Biomaterialia, 2011, 7, 1853.
3 Qiao F, Chau C K, Li Z J. Construction and Building Materials, 2010, 24, 695.
4 Li V C, Leung C K Y. Journal of Engineering Mechanics-Asce, 1992, 118, 2246.
5 Li V C, Wang S X, Wu C. ACI Materials Journal, 2001, 98, 483.
6 Li V C, Wu C, Wang S X, et al. ACI Materials Journal, 2002, 99, 463.
7 Li Z M, Delsaute B, Lu T S, et al. Construction and Building Materials, 2021, 292, 1.
8 Lin W, Sun W, Li Z J. Journal of Building Materials, 2010, 13(6), 716(in Chinese).
林玮, 孙伟, 李宗津. 建筑材料学报, 2010, 13(6), 716.
9 Li C M, Wang P M, Wang A, et al. Concrete, 2015(1), 115(in Chinese).
李春梅, 王培铭, 王安, 等. 混凝土, 2015(1), 115.
10 Li G X, Tong W L, Zhang G, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(2), 352 (in Chinese).
李国新, 仝万亮, 张歌, 等. 硅酸盐通报, 2016, 35(2), 352.
11 Ahmad M R, Chen B, Yu J. Composites Part B-Engineering, 2019, 168, 204.
12 Feng H, Sheikh M N, Hadi M N S, et al. Construction and Building Materials, 2018, 185, 648.
13 Feng H, Sheikh M N, Hadi M N S, et al. Construction and Building Materials, 2018, 185, 423.
14 Fang Y, Chen B, Oderji S Y. Construction and Building Materials, 2018, 188, 729.
15 Ahmad M R, Chen B. Construction and Building Materials, 2018, 190, 466.
16 Feng H, Li Z Y, Wang W Q, et al. Cement & Concrete Composites, 2021, 121, 104079.
17 Usman M, Farooq S H, Umair M, et al. Construction and Building Materials, 2020, 230, 117043.
18 Gao S L, Xu S L. China Concrete and Cement Products, 2009(6), 43 (in Chinese).
高淑玲, 徐世烺. 混凝土与水泥制品, 2009(6), 43.
19 He X X, Ding L B. Industrial Construction, 2016, 46(9), 112 (in Chinese).
何淅淅, 丁鲁波. 工业建筑, 2016, 46(9), 112.
20 Wang Y C, Hou M J, Yu J T, et al. Materials Reports, 2018, 32(10), 3535 (in Chinese).
王义超, 侯梦君, 余江滔, 等. 材料导报, 2018, 32(10), 3535.
21 Ministry of Housing and Urban-Rural Development, RPC. Standard for test methods of concrete physical and mechanical properties, China Architecture & Building Press, 2019, pp.15 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准, 中国建筑工业出版社, 2019, pp.15.
22 China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete, China Planning Press, 2009, pp.44 (in Chinese).
中国工程建设标准化协会. 纤维混凝土试验方法标准, 中国计划出版社, 2009, pp.44.
23 JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks(HPFRCC), Springer, Tokyo, Japan, 2008, pp.10.
24 Ministry of Industry and Information Technology of the PRC. Standard test methods for the mechanical properties of ductile fiber reinforced cementitious composites, 2018, pp.3 (in Chinese).
中国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法, 2018, pp.3.
25 ASTM. Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression, US, 2014, pp.4.
26 Li D X, Li P X, Feng C H. Journal of Building Materials, 2009, 12(5), 505 (in Chinese).
李东旭, 李鹏晓, 冯春花. 建筑材料学报, 2009, 12(5), 505.
27 Wu J, Lai Z Y, Deng Q B, et al. Advances in Materials Science and Engineering, 2021, 2021, 1.
28 Sun R W, Fanourakis G C. Structural Concrete, 2022, 23, 593.
29 Wang Y Q, Sun L, Liu S G, et al. Concrete, 2018(10), 17 (in Chinese).
王玉清, 孙亮, 刘曙光, 等. 混凝土, 2018(10), 17.
30 He X X, Gan T. In:The 6th International Conference on Seismic Technology of Building Structures. Chengdu, 2018, pp.536 (in Chinese).
何淅淅, 甘甜 . 第六届建筑结构抗震技术国际会议. 成都, 2018, pp.536.
31 Ministry of Housing and Urban-Rural Development, RPC. Code for design of concrete structures, China Architecture & Building Press, 2015, pp.210 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝结构设计规范, 中国建筑工业出版社, 2015, pp.210.
[1] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[5] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[6] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[7] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[8] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[9] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[10] 陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
[11] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[12] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[13] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[14] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[15] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed