Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 22100206-7    https://doi.org/10.11896/cldb.22100206
  金属与金属基复合材料 |
镍基高温合金与耐火材料界面特性研究
潘元帅, 王刚*, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉
中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,河南 洛阳 471039
Research on the Interface Properties of Nickel-based Superalloy and Refractories
PAN Yuanshuai, WANG Gang*, FENG Haixia, LIU Jun, YUAN Bo, TIAN Pengdan, HAN Yihui
State Key Laboratory of Advanced Refractory Materials, Sinosteel Luoyang Institute of Refractory Research Co., Ltd., Luoyang 471039, Henan, China
下载:  全 文 ( PDF ) ( 50740KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究耐火材料与熔融合金的界面特性,对合金冶炼时耐火材料的选材有指导性意义。本工作采用座滴法,研究了1 600 ℃×1 h(Ar)条件下镍基高温合金与电熔白刚玉、烧结镁铝尖晶石和氧化镁稳定氧化锆三种耐火材料的高温界面润湿性和界面渗透特性。结果表明:镍基高温合金与电熔白刚玉不润湿 (接触角为92.1°),基片表面形貌完好,渗透深度约1.4 mm;与烧结镁铝尖晶石润湿 (接触角为82.6°),基片渗透深度约0.38 mm,但其表面被侵蚀凹陷,且出现裂纹;与镁稳定氧化锆润湿性较好 (接触角为52.9°),基片表面完好,几乎无渗透,但残留有大量被污染合金。结合上述三种材料的综合性能及实际使用性价比,以电熔白刚玉和烧结镁铝尖晶石为主要原料,加入镁稳定氧化锆来提高抗侵蚀渗透性能,有望制备得到性能好、寿命长的高温合金冶炼用耐火材料坩埚。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘元帅
王刚
冯海霞
柳军
袁波
田朋丹
韩艺辉
关键词:  镍基高温合金  耐火材料  高温润湿性  界面渗透    
Abstract: The interface characteristics of refractory materials and molten alloys have long been studied for the selection of appropriate refractory materials for alloy smelting. Herein, the high-temperature wettability and permeability characteristics of nickel-based superalloys with white fused corundum, sintered magnesia-alumina spinel, and magnesia stabilized zirconia at 1 600 ℃ for 1 h under an Ar atmosphere were studied. The results indicate that the white fused corundum did not exhibit wetting with the nickel-based superalloy, with a contact angle of 92.1°. Furthermore, the surface morphology of the substrate remained unchanged, and the penetration depth was about 1.4 mm. However, wetting of white fused corundum occurred with sintered magnesium aluminium spinel, with a contact angle of 82.6° and substrate penetration depth of about 0.38 mm. In addition, the surface was eroded, depressed, and cracked. For the wetting of white fused corundum with magnesia stabilized zirconia, the contact angle was 52.9°, and the substrate surface remained intact with almost no permeability, but a large amount of contaminated alloy was formed. Based on a comprehensive analysis of performance and cost, white fused corundum and sintered magnesium aluminium spinel were identified as the primary raw materials, with magnesium stabilized zirconium oxide addtion to improve erosion resistance and permeability. The combination is expected to yield optimal refractory crucibles with superior performance and durability for high-temperature alloy smelting.
Key words:  nickel-based superalloys    refractories    high temperature wettability    interfacial penetration
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TQ175  
基金资助: 国家重点研发计划(2021YFB3701400)
通讯作者:  *王刚,博士,正高级工程师,硕士研究生导师,享受国务院政府特殊津贴专家。现任中钢集团洛阳耐火材料研究院有限公司研发中心主任。主要从事先进结构陶瓷工艺、性能和应用研究。wangg@lirrc.com   
作者简介:  潘元帅,中钢集团洛阳耐火材料研究院硕士研究生,在王刚教授的指导下进行研究,目前主要研究领域为高温合金冶炼用耐火材料。
引用本文:    
潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
PAN Yuanshuai, WANG Gang, FENG Haixia, LIU Jun, YUAN Bo, TIAN Pengdan, HAN Yihui. Research on the Interface Properties of Nickel-based Superalloy and Refractories. Materials Reports, 2025, 39(3): 22100206-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100206  或          http://www.mater-rep.com/CN/Y2025/V39/I3/22100206
1 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 1281 (in Chinese).
师昌绪, 仲增墉. 金属学报, 2010, 46(11), 1281.
2 Wang H Y, An Y Q, Li C Y, et al. Materials Reports, 2011, 25(S2), 482 (in Chinese).
王会阳, 安云岐, 李承宇, 等. 材料导报, 2011, 25(S2), 482.
3 Yang S, Yun J, Moon B, et al. Journal of Mechanical Science and Technology, 2022, 36(1), 127.
4 Liao Z R, Xu D D, Luna Gonzalogarcia, et al. Journal of Materials Processing Technology, 2021, 298(7), 117313.
5 Zhao Y, Wang L, Chen C Y, et al. Ceramics International, 2023, 49(1), 117.
6 Kanyo E J, Schafföner S, Uwanyuze S R, et al. Journal of the European Ceramic Society, 2020, 40(15), 4955.
7 Fan J X. Preparation and properties of Al2O3 crucible for smelting superalloy. Master's Thesis, Chang'an University, China, 2023 (in Chinese).
樊嘉显. 高温合金熔炼用氧化铝坩埚制备与性能研究. 硕士学位论文, 长安大学, 2023.
8 Wang G, Wang L W, Yuan B, et al. Refractories, 2023, 57(5), 442 (in Chinese).
王刚, 王来稳, 袁波, 等. 耐火材料, 2023, 57(5), 442.
9 Zhang Y, Li P H, Jia C L, et al. Materials Reports, 2018, 32(9), 1496 (in Chinese).
张勇, 李佩桓, 贾崇林, 等. 材料导报, 2018, 32(9), 1496.
10 Pei Z Y. Study on K465 nickel-base superalloy. Master's Thesis, Northeastern University, China, 2008 (in Chinese).
裴忠治. K465镍基高温合金的研究. 硕士学位论文, 东北大学, 2008.
11 Gao X Y, Zhang L, Qu X H, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11), 1551.
12 Jiang L. Zirconia refractory for melting nickel based superalloy. Master's Thesis, Shanghai University, China, 2017 (in Chinese).
姜兰. 用于镍基高温合金熔炼氧化锆耐火材料的研究. 硕士学位论文, 上海大学, 2017.
13 Wang H W, Yang J X, Meng J, et al. Ceramics International, 2020, 46(14), 22057.
14 Li S J, Liu S, Duan H P, et al. Journal of the Chinese Ceramic Society, 1999, 27(6), 757 (in Chinese).
李树杰, 刘深, 段辉平, 等. 硅酸盐学报, 1999, 27(6), 757.
15 Chen X Y, Jin Z, Bai X F, et al. Acta Metallurgica Sinica, 2015, 51(7), 853 (in Chinese).
陈晓燕, 金喆, 白雪峰, 等. 金属学报, 2015, 51(7), 853.
16 Song Q Z, Qian K, Shu L, et al. Acta Metallurgica Sinica, 2022, 58(7), 868 (in Chinese).
宋庆忠, 潜坤, 舒磊, 等. 金属学报, 2022, 58(7), 868.
17 Zhang Z, Zhu K L, Liu L J, et al. Journal of the Chinese Ceramic Society, 2013(9), 1278 (in Chinese).
张钊, 朱凯亮, 刘岚洁, 等. 硅酸盐学报, 2013(9), 1278.
18 Yin R R. Investigation on interfacial reaction between multicomponent slag and MgO-C refractories. Master's Thesis, University of Science and Technology Liaoning, China, 2020 (in Chinese).
尹冉冉. 多元熔渣与MgO-C耐火材料界面反应研究. 硕士学位论文, 辽宁科技大学, 2020.
19 Mukai K, Tao Z, Goto K, et al. Scandinavian Journal of Metallurgy, 2002, 31(1), 68.
20 Jiang X M, Chen Z Y. Iron and Steel, 1993, 28(7), 21 (in Chinese).
蒋明学, 陈肇友. 钢铁, 1993, 28(7), 21.
[1] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[2] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[3] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[4] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[5] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[6] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[7] 孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
[8] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[9] 刘功起, 吴玉锋, 杨天伟, 李彬, 王朝辉. 垃圾焚烧炉关键服役材料发展现状及研究趋势[J]. 材料导报, 2021, 35(17): 17125-17135.
[10] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[11] 贾小东, 田琳, 高伟, 陈树江, 李国华. 基于酸浸法去除水泥窑用后砖中氯化钾的研究[J]. 材料导报, 2021, 35(11): 11034-11038.
[12] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[13] 毛燕东, 刘雷, 李克忠. 煤催化气化工艺中含碱灰渣对不同耐火材料的腐蚀性研究[J]. 材料导报, 2020, 34(20): 20061-20065.
[14] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[15] 钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed