Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10144-10149    https://doi.org/10.11896/cldb.20030095
  金属与金属基复合材料 |
GH4169旋转摩擦焊飞边成形机理研究
金峰1, 熊江涛1, 石俊秒2, 郭德伦3, 李京龙2
1 西北工业大学凝固技术国家重点实验室,西安 710072
2 西北工业大学摩擦焊接陕西省重点实验室,西安 710072
3 中航工业北京航空制造工程研究所,北京 100024
Flash Formation Mechanism During Rotary Friction Welding of GH4169 Superalloy
JIN Feng1, XIONG Jiangtao1, SHI Junmiao2, GUO Delun3, LI Jinglong2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China
3 AVIC Manufacturing Technology Institute, Beijing 100024, China
下载:  全 文 ( PDF ) ( 5721KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文以Φ25 mm的GH4169实心棒为母材展开连续驱动旋转摩擦焊实验,在缩短量5 mm、焊接压力200 MPa、转速500~2 500 r/min条件下,结合高速摄像机、红外热成像仪获得缩短速度演变及界面温度,通过光镜、扫描电镜、EBSD手段表征接头形貌演变,利用Matlab表征界面产热分布,揭示飞边成形机理。结果表明,GH4169旋转摩擦焊飞边随转速增大,依次呈现为光滑、表面弧纹、开裂形貌。800 r/min是一个临界转速判据,当转速小于800 r/min时,飞边呈光滑形貌;当转速介于800~1 500 r/min时,飞边出现弧纹;当转速不低于1 500 r/min时,飞边显著开裂。光滑形貌对应于较慢的飞边生长速度和较长的生长时间,飞边金属在变形、挤出界面的同时,有充分的时间再结晶软化,使表面流铺光滑;弧纹和开裂形貌对应于飞边在快速和较短时间内生长,再结晶来不及完成而发生加工硬化开裂。不同的飞边形貌,其形成机理不同:光滑形貌是塑性环(塑化金属)在界面中径到边缘处(0.43R~R)形核,随后铺展并挤出界面发生飞边连续生长现象,即飞边是塑化金属均匀流铺、挤出的结果;弧纹和开裂形貌对应于塑性环形核在界面内侧(0~0.43R),在界面压力的作用下被封闭在界面内部无法挤出,其飞边的形成,是界面持续摩擦使温度达到焊接温度后的变形挤出结果,即飞边是焊接后期界面金属快速镦粗变形形成的。不同的飞边形貌,对接头的静载拉伸强度分布影响不大,但影响到接头外缘延伸率。光滑、弧纹、开裂形貌,分别对应于接头外缘延伸率17%、9%、6%,相应的接头延伸率不均匀性从8%上升至50%、66%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金峰
熊江涛
石俊秒
郭德伦
李京龙
关键词:  镍基高温合金  GH4169  旋转摩擦焊  飞边形貌  塑性环  接头性能    
Abstract: In this work, continuous-drive rotary friction welding was conducted on GH4169 rods in diameter of Φ25 mm to investigate the flash formation mechanism. The welding parameters were set as burn-off length 5 mm, welding pressure 200 MPa and rotation speed ranged as 500—2 500 r/min. The high-speed camera was installed to monitor the burn-off rate; whereas the infrared camera to collect the surface temperature of the joint. The joints were cut for interface morphology and microstructure observation by OM, SEM and EBSD. On the other hand, the calculation on friction heat liberation was modeled and conducted in Matlab environment, which is correlated by the experiment of interim stops on welding process that were carried out to reveal the transient morphology of the joint. The results tell that, the joint shows the flash appearance as smooth, ‘arcuate microcracked' and cracked consequently as the rotation speed is increased. The rotation speed was found a criterion at about 800 r/min, below which the joint presents smooth flash. When the rotation speed is around 800—1 500 r/min and over 1 500 r/min, ‘arcuate microcracked' and cracked flash occur consequently. Smooth flash corresponds to slower growth speed of the flash with longer growth time, which provides the conditions for recrystallization and softening when the metal is extruded to form flash. Whereas, ‘arcuate microcracked' and cracked flash correspond to faster speed and shorter time, where recrystallization has not been completed before work hardening and cracking during the flash formation. Moreover, different flash appearances correspond to different formation mechanisms. Smooth flash is the result of uniform flow and extrusion of plasticized metal, which is originated from the corona-bond initiating at middle to the edge (0.43RR) of the interface and then extending. Whereas, ‘arcuate microcracked' and cracked flash are formed under rapid forging process of interface metal at welding temperature due to the lack of plasticized metal, which initiates at inner side of the interface (0—0.43R) and then is closed without flow under the normal stress. Different flashes make neglectable effects on local strength distribution of the joint but the elongation sampled at periphery. The smooth, ‘arcuate microcracked' and cracked flash correspond to 17%, 9% and 6% elongation sampled at periphery respectively, where the correspon-ding inhomogeneity of joint elongation increases from 8% to 50%, 66%.
Key words:  nickel-based superalloy    GH4169    rotary friction welding    flash appearance    corona-bond    joint properties
                    发布日期:  2020-04-26
ZTFLH:  TG453  
基金资助: 国家自然科学基金(51575451;51475376)
通讯作者:  李京龙,西北工业大学材料学院教授、博士生导师。主要从事摩擦焊、 扩散焊、钎焊及热喷涂领域的研究工作。lijinglg@nwpu.edu.cn   
作者简介:  金峰,西北工业大学工学博士在读。主要从事旋转摩擦焊等固相焊接的成形工艺及机理研究。
引用本文:    
金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
JIN Feng, XIONG Jiangtao, SHI Junmiao, GUO Delun, LI Jinglong. Flash Formation Mechanism During Rotary Friction Welding of GH4169 Superalloy. Materials Reports, 2020, 34(10): 10144-10149.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030095  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10144
1 Chen X M, Lin Y C, Chen M S, et al. Materials & Design, 2015, 77, 41.
2 Yang X W, Li W Y, Li J L, et al. Materials & Design, 2015, 84, 133.
3 Ning F Z, Cai Y X. Friction welding, Mechanical Industry Press, China, 1983(in Chinese).
宁斐章, 才荫先. 摩擦焊, 机械工业出版社, 1983.
4 Li W Y, Vairis A, Preuss M, et al. International Materials Reviews, 2016, 61(2),71.
5 Jin F, Li J L, Du Y J, et al. Journal of Manufacturing Processes, 2019, 45, 595.
6 Cai Y X, Sun S T, Zhu G Z, et al.Transactions of the China Welding Institution, 1984,5(2),57(in Chinese).
才荫先, 孙松涛, 朱桂芝, 等. 焊接学报, 1984,5(2), 57.
7 Bai X Y. Microstructure and mechanical properties of axial friction welded nickel-based superalloy GH4169. Master's Thesis, Shandong University, China, 2017(in Chinese).
白晓阳. GH4169镍基高温合金轴向摩擦焊接头微观组织与力学性能. 硕士学位论文,山东大学, 2017.
8 Nan X J. Heat liberation modelling of rotary friction welding process and numerical simulation on joint formation mechanism. Master's Thesis, Northwestern Polytechnical University, China, 2019(in Chinese).
南旭惊. 旋转摩擦焊产热模型与接头成形机制数值模拟. 硕士学位论文,西北工业大学, 2019.
9 Li F G, Zhang M C, Duan L Y, et al. Transactions of the China Wel-ding Institution, 2001, 22(4), 43(in Chinese).
李付国, 张敏聪, 段立宇, 等. 焊接学报, 2001, 22(4), 43.
10 Zhang Q Z. Numerical simulation of friction welding process of GH4169 superalloy. Ph.D. Thesis, Dalian University of Technology, China, 2007(in Chinese).
张全忠. GH4169合金摩擦焊接过程的数值模拟研究. 博士学位论文, 大连理工大学, 2007.
11 Ji S D, Liu J G, Zhang L G, et al. Transactions of the China Welding Institution, 2013, 34(4),31(in Chinese).
姬书得, 刘建光, 张利国, 等. 焊接学报, 2013, 34(4), 31.
12 Jin F, Li J L, Liu P, et al. Journal of Manufacturing Processes, 2019, 46, 286.
13 Maalekian M. Science and Technology of Welding and Joining, 2007, 12(8), 738.
14 Luo J, Chen H, Liu S S. Welding & Joining, 2017(1), 13(in Chinese).
罗键, 陈欢, 刘姗姗. 焊接, 2017(1), 13.
15 Li X, Li J L, Liao Z X, et al. Journal of Adhesion Science and Technology, 2018, 32(18), 1987.
16 Crossland B. Contemporary Physics, 2006, 12(6),559.
[1] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[2] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[3] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[4] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[5] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[6] 赵朋成, 刘振伟, 王璐璐, 高世一, 王振民. X65管线钢管闪光对焊工艺参数对焊接接头力学性能和缺陷的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 87-91.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed