Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120141-1    https://doi.org/10.11896/cldb.21120141
  金属与金属基复合材料 |
镍基高温合金载能束增材修复技术研究现状
蒋瑞鑫1, 牛宗伟1, 史程程1, 任智强2, 韩国峰2,*, 杨保伟1, 王文宇2,*, 杨善林3, 陈贺连4
1 山东理工大学机械工程学院,山东 淄博 255049
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 中国人民解放军63926部队,北京 100192
4 中国人民解放军空军指挥学院教学考评中心,北京 100097
Research Status of Energy-carrying Beam Additive Repairing Technology for Nickel-based Superalloys
JIANG Ruixin1, NIU Zongwei1, SHI Chengcheng1, REN Zhiqiang2, HAN Guofeng2,*, YANG Baowei1, WANG Wenyu2,*, YANG Shanlin3, CHEN Helian4
1 College of Mechanical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
2 Key Laboratory of National Defense Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
3 Unit 63926 of the People's Liberation Army of China, Beijing 100192, China
4 Teaching and Evaluation Center, Chinese People's Liberation Army Air Force Command College, Beijing 100097, China
下载:  全 文 ( PDF ) ( 20759KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基高温合金在高温下具有较强的抗蠕变、耐氧化和防腐蚀性能,被广泛应用于航空航天发动机和工业燃气轮机等热端部件。在恶劣的工作条件下,热端部件受到磨损、冲击、高温侵蚀和交变应力的作用易产生烧蚀、热裂纹、断裂等损伤,直接影响装备的服役安全。因此,如何恢复镍基高温合金损伤件的使役性能是目前亟待解决的问题。载能束具有能量集中、穿透性强、热输入低等特点,可用于快速恢复镍基合金受损零件的尺寸和性能,且修复区与基体形成良好的冶金结合,为镍基高温合金的优质、高效修复提供了可行途径。本文介绍了激光、电子束、电弧和等离子等载能束增材修复工艺的技术原理,归纳了镍基高温合金修复的瓶颈难题,综述了当前针对镍基合金修复难点所取得的重要研究进展,指出了载能束增材修复镍基高温合金的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋瑞鑫
牛宗伟
史程程
任智强
韩国峰
杨保伟
王文宇
杨善林
陈贺连
关键词:  镍基高温合金  载能束修复  增材修复  后处理  工艺优化  设备改进    
Abstract: Nickel-based superalloys have been widely used in hot-end components such as aerospace engines and industrial gas turbines because of their excellent creep resistance, high oxidation resistance and corrosion resistance at elevated temperatures. Under the extreme environment such as wear, impact force, high temperature erosion and alternating stress, the hot-end parts suffer damages, including thermal cracking, fracture and so on, which directly effects the service safety of the equipment. Therefore, how to restore the service performance of nickel-based superalloys damaged parts is a burning problem. The energy-carrying beam provides a high-quality and efficient restoration way for nickel-based superalloys to quickly rebuild the size and performance of the damaged parts due to its advantages such as concentrated energy, strong penetration, low heat input, and good metallurgical bonding between coating and substrate. This article introduces the technical principles of laser, electron, arc, and plasma energy-carrying beam additive repair processes, summarizes the bottleneck problems in the repair of nickel-based superalloys, and reviews the current important research progress in the repair of nickel-based alloys. The developing direction of energy-carrying beam additive repair technology for nickel-based superalloys is also highlighted.
Key words:  nickel-based superalloy    energy-carring beam repair    additive repair    post-processing    process optimization    equipment improvement
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TB35  
  TG43  
基金资助: 国家重点研发项目(2018YFB1105800)
通讯作者:  * 韩国峰,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2009年6月北京理工大学材料科学与工程专业本科毕业,2011年12月装甲兵工程学院材料加工专业硕士毕业,2015年6月装甲兵工程学院材料科学与工程专业博士毕业后留校工作至今。目前主要从事增材修复、金属材料表面防护等方面的研究工作。发表论文30余篇,授权国家发明专利20余项,出版专著2部。获省部级科技进步一等奖2项,中国科协“青年人才托举工程”和创新人才工程青年科技英才获得者。faf428@sina.com;王文宇,陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2007年北京化工大学自动化专业本科毕业,2010年北京化工大学控制科学与工程专业毕业获得工学硕士学位。目前主要从事增材制造及再制造领域的研究工作。发表论文23篇,获国家发明专利授权3项,参与制定国家标准16项,参与撰写专著5部。kaolawwy@qq.com   
作者简介:  蒋瑞鑫,2020年6月于山东理工大学获得工学学士学位。现为山东理工大学机械工程学院硕士研究生,在韩国峰副研究员的指导下开展课题研究。目前主要研究领域为增材修复。
引用本文:    
蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
JIANG Ruixin, NIU Zongwei, SHI Chengcheng, REN Zhiqiang, HAN Guofeng, YANG Baowei, WANG Wenyu, YANG Shanlin, CHEN Helian. Research Status of Energy-carrying Beam Additive Repairing Technology for Nickel-based Superalloys. Materials Reports, 2023, 37(15): 21120141-1.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120141  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120141
1 Guo Y, Zhang J X, Xiong J K, et al. Rare Metal Materials and Enginee-ring, 2021, 50(4), 1462 (in Chinese).
郭洋, 张建勋, 熊建坤, 等. 稀有金属材料与工程, 2021, 50(4), 1462.
2 Zhu S. Journal of Mechanical Engineering, 2013, 49(23), 1 (in Chinese).
朱胜. 机械工程学报, 2013, 49(23), 1.
3 Zhu S, Liu J, Yin F L, et al. Journal of Armored Forces, 2014(28), 81 (in Chinese).
朱胜, 柳建, 殷凤良, 等. 装甲兵学报, 2014(28), 81.
4 Zhu S, Zhou C J, Zhou K B. China Mechanical Engineering, 2018, 29(21), 2590 (in Chinese).
朱胜, 周超极, 周克兵. 中国机械工程, 2018, 29(21), 2590.
5 Ahmadi-pidani R, Shoja-razavi R, Mozafarinia R, et al. Materials and Design, 2014, 57, 336.
6 Zhu L D, Xue P S, Lan Q, et al. Optics & Laser Technology, 2021, 138, 106915.
7 Liu Y N, Ding Y, Yang L J, et al. Journal of Manufacturing Processes, 2021, 66, 341.
8 Chen L Y, Zhao Y, Song B X, et al. Optics and Laser Technology, 2021, 139, 107009.
9 Khamidullin B A, Tsivilskiy I V, Gorunov A I, et al. Surface and Coa-tings Technology, 2019, 364, 430.
10 VMuvvala G, Patra K D, Nath A K. Optics and Lasers in Engineering, 2017, 88, 139.
11 Liu S, Ma H Q, Sun H M. Journal of Changsha Aeronautics Vocational and Technical College, 2021, 21(1), 31 (in Chinese).
刘赛, 马海强, 孙红梅. 长沙航空职业技术学院学报, 2021, 21(1), 31.
12 Chen Z H, Sun W L, Huang Y, et al. Laser Technology, 2021, 45(4), 441 (in Chinese).
陈子豪, 孙文磊, 黄勇, 等. 激光技术, 2021, 45(4), 441.
13 Charles A, Salem M, Moshiri M, et al. In: Sustainable Design and Manufacturing 2020. Singapore, 2021, pp. 297.
14 Ding Y Y, Warton J, Kovacevic R. Additive Manufacturing, 2016, 10, 24.
15 Mazzarisi M, Campanelli S L, Angelastro A, et al. The International Journal of Advanced Manufacturing Technology, 2021, 112(1), 157.
16 Kisielewicz A, Sikström F, Christiansson A, et al. Procedia Manufactu-ring, 2018, 25, 418.
17 Gaja H, Liou F. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4), 561.
18 Liu W W, Tang Z J, Liu X Y, et al. Procedia CIRP, 2017, 61, 235.
19 Yan Z R, Liu W W, Tang Z J, et al. Journal of Manufacturing Processes, 2019, 44, 309.
20 Caprio L, Demir A G, Previtali B. Additive Manufacturing, 2020, 36, 101470.
21 Kisielewicz A, Sadeghi E, Sikström F, et al. Materials and Design, 2020, 186, 108317.
22 Wang C, Tan X P, Tor S B, et al. Additive Manufacturing, 2020, 36, 101538.
23 Cortina M, Arrizubieta J I, Ruiz J E, et al. Procedia CIRP, 2018, 68, 387.
24 Wirth F, Wegener K. Additive Manufacturing, 2018, 22, 307.
25 Zhang J P, Shi S H, Jiang W W, et al. Chinese Journal of Lasers, 2019, 46(10), 122 (in Chinese).
张吉平, 石世宏, 蒋伟伟, 等. 中国激光, 2019, 46(10), 122.
26 Bambach M, Sizova I, Kies F, et al. Additive Manufacturing, 2021, 47, 102269.
27 Li D Y, Yin F S, Wang X M, et al. Surface Technology, 2020, 49(8), 105 (in Chinese).
李丹阳, 殷凤仕, 王晓明, 等. 表面技术, 2020, 49(8), 105.
28 Moiduddin K, Darwish S, Al-ahmari A, et al. Electronic Journal of Biotechnology, 2017, 29, 22.
29 Wahlmann B, Körner C, Nunn M. Materials Science and Engineering A, 2021, 811, 141082.
30 Unocic K A, Kirka M M, Cakmak E, et al. Materials Science and Engineering A, 2020, 772, 138607.
31 Fernandez-zelaia P, Kirka M K, Rossy A M, et al. Acta Materialia, 2021, 216, 117133.
32 Lee H J, Kim H K, Hong H U, et al. Journal of Alloys and Compounds, 2019, 781, 842.
33 Liu H L, Lu R X, Chen J, et al. Heat Treatment of Metals, 2021, 46(4), 161 (in Chinese).
刘海浪, 卢儒学, 陈健, 等. 金属热处理, 2021, 46(4), 161.
34 Liu H L, Wang B, Qi Z W, et al. Rare Metal Materials and Enginee-ring, 2018, 47(11), 3338.
35 Zhang R B, Wang G F, Chen Y H. Hot Working Technology, 2019, 48(4), 174 (in Chinese).
张瑞宾, 王国富, 陈元华. 热加工工艺, 2019, 48(4), 174.
36 Wahlmann B, Körner C, Nunn M. Materials Science and Engineering:A, 2021, 811, 141082.
37 Gong S L, Suo H B, Li H X. Aeronautical Manufacturing Technology, 2013(13), 66 (in Chinese).
巩水利, 锁红波, 李怀学. 航空制造技术, 2013(13), 66.
38 Wong H, Neary D, Jones E, et al. Additive Manufacturing, 2019, 27, 185.
39 Lang Z Q, Ye Z, Yang J, et al. Chinese Journal of Materials Research, 2021, 35(3), 161 (in Chinese).
郎振乾, 叶政, 杨健, 等. 材料研究学报, 2021, 35(3), 161.
40 Sun M L, Song C H, Ji R L, et al. Welding & Joining, 2016(12), 33 (in Chinese).
孙茂龄, 宋昌洪, 吉荣亮, 等. 焊接, 2016(12), 33.
41 Selvi S, Vishvaksenan A, Rajasekar E. Defence Technology, 2018, 14(1), 28.
42 Tang Y L. Study on microstructure and high temperature mechanical properties of CMT welded butt joints of inconel 718 Sheel. Master's Thesis, Shanghai University of Engineering Science, 2020 (in Chinese).
唐云龙. 镍基718合金CMT薄板对接接头组织特性与高温力学性能研究. 硕士学位论文, 上海工程技术大学, 2020.
43 Yin H, Huang R F, Cao H J, et al. China Surface Engineering, 2021, 34(3), 1 (in Chinese).
伊浩, 黄如峰, 曹华军, 等. 中国表面工程, 2021, 34(3), 1.
44 Chen J Q, Lu H, Chen H, et al. Electric Welding Machine, 2015, 45(6), 21 (in Chinese).
陈静青, 陆皓, 陈辉, 等. 电焊机, 2015, 45(6), 21.
45 Zhang X H, Ma P Z, Zhang K, et al. Journal of Mechanical Enginee-ring, 2018, 54(2), 93 (in Chinese).
张晓鸿, 马朋召, 张康, 等. 机械工程学报, 2018, 54(2), 93.
46 Zhong C, Liu F C, Cheng H M, et al. Hot Working Technology, 2019, 48(3), 28 (in Chinese).
仲超, 刘奋成, 程洪茂, 等. 热加工工艺, 2019, 48(3), 28.
47 Tamil P S, Sakthivel P, Shanmugam M, et al. Materials Today, Procee-dings, 2021, 37, 1917.
48 Liu Y J, Guo Z Y, Fang H P. Hot Working Technology, 2020, 49(15), 114 (in Chinese).
刘拥军, 郭占英, 方海鹏. 热加工工艺, 2020, 49(15), 114.
49 Wang B Y. Research on microstructure and propertiesof MIG welded joints for GH4169 nickel-based superalloy. Master's Theise, Nanjing University of Aeronautics and Astronautics, China, 2018 (in Chinese).
王冰瑶. GH4169镍基高温合金MIG焊接头组织与性能研究. 硕士学位论文, 南京航空航天大学, 2018.
50 Dou L, Guo S Q, Chen H S, et al. Welding Technology, 2020, 49(9), 126 (in Chinese).
窦磊, 郭双全, 陈海生, 等. 焊接技术, 2020, 49(9), 126.
51 Xu W H, Zhang P L, Jiang Q, et al. Materials for Mechanical Enginee-ring, 2020, 44(10), 17 (in Chinese).
徐文虎, 张培磊, 蒋旗, 等. 机械工程材料, 2020, 44(10), 17.
52 Wang Y F. Research on Inconel625 alloy microstructure and properties using wire arc additive manufacturing based on the cold metal transfer(CMT). Master's Thesis, Wenzhou University, China, 2020 (in Chinese).
王扬帆. CMT电弧增材制造Inconel625合金组织和性能研究. 硕士学位论文, 温州大学, 2020.
53 Geng Z, Wei Z J, Han X F, et al. MW Metal Forming, 2014 (22), 36 (in Chinese).
耿正, 魏占静, 韩雪飞, 等. 金属加工(热加工), 2014 (22), 36.
54 Shen Q K, Kong X D, Chen X Z. Journal of Materials Science & Techno-logy, 2021, 74(15), 136.
55 Li C H. The study of arc simulation on twin-cable 14-wire GMAW. Master's Thesis, Jiangsu University of Science and Technology, China, 2017 (in Chinese).
李翠红. 双缆式十四丝GMAW焊接电弧的数值模拟研究. 硕士学位论文, 江苏科技大学, 2017.
56 Li Z X, Cui Y N, Yu Z Y, et al. Journal of Alloys and Compounds, 2021, 876, 160021.
57 Cong B Q, Su Y, Qi B J, et al. Aeronautical Manufacturing Technology, 2016(11), 41 (in Chinese).
从保强, 苏勇, 齐铂金, 等. 航空制造技术, 2016(11), 41.
58 Cong B Q, Su Y, Qi B J, et al. Aerospace Manufacturing Technology, 2016(3), 29 (in Chinese).
从保强, 苏勇, 齐铂金, 等. 航天制造技术, 2016(3), 29.
59 ZHANG G K. Simultaneous sensing and control of both weld pool and keyhole in pluse plasma arc welding. Ph. D. Thesis, Shandong University, China, 2015 (in Chinese).
张国凯. 受控脉冲等离子弧焊接熔池—小孔的同步检测与控制. 博士学位论文, 山东大学, 2015.
60 Li J P, Zhou Z L, Chong F J, et al. Modern Manufacturing Technology and Equipment, 2021, 57(7), 147 (in Chinese).
李建平, 周正亮, 崇凤娇, 等. 现代制造技术与装备, 2021, 57(7), 147.
61 Zhang W J. Research on the process, microstructure and properties of nickel-based superalloy fabricated by plasma arc additive manufacturing. Master's Thesis, Shenyang University of Technology, China, 2020 (in Chinese).
张文杰. 镍基合金等离子弧增材制造工艺及组织性能. 硕士学位论文, 沈阳工业大学, 2020.
62 Wang K B, Liu Y X, Sun Z, et al. Journal of Alloys and Compounds, 2020, 819, 152936.
63 Wang B K, Liu Y X, Lv Y H, et al. Materials Reports, 2021, 35(2), 2086 (in Chinese).
王凯博, 刘玉欣, 吕耀辉, 等. 材料导报, 2021, 35(2), 2086.
64 Xu J F, Lyu Y H, Liu Y X, et al. Journal of Materials Engineering, 2012(11), 6 (in Chinese).
徐富家, 吕耀辉, 刘玉欣, 等. 材料工程, 2012(11), 6.
65 Xu J F, Lyu Y H, Huang R S, et al. Transactions of the China Welding Institution, 2016, 37(8), 75 (in Chinese).
徐富家, 吕耀辉, 黄瑞生, 等. 焊接学报, 2016, 37(8), 75.
66 Wang B K, Lyu Y H, Liu Y X, et al. Materials Reports, 2017, 31(14), 100 (in Chinese).
王凯博, 吕耀辉, 刘玉欣, 等. 材料导报, 2017, 31(14), 100.
67 Zhang Y, Wang W Q, Xv H Y. Transactions of Materials and Heat Treatment, 2016, 37(7), 185 (in Chinese).
张野, 王文权, 徐红勇. 材料热处理学报, 2016, 37(7), 185.
68 Su C Y, Chou C P, Wu B C, et al. Journal of Materials Engineering and Performance, 1997, 6(5), 619.
69 Wang L, Zhang Y L, Hua X M, et al. Intermetallics, 2021, 136, 107277.
70 Feng Y H, Tang R H, Liu S Y, et al. Transactions of the China Welding Institution, 2021, 42(5), 77 (in Chinese).
冯曰海, 汤荣华, 刘思余, 等. 焊接学报, 2021, 42(5), 77.
71 Liu S Y. Investigation on microstructures and mechanical properties of components manufactured by double hot-wire and plasma arc additive manufacturing processing. Master's Thesis, Nanjing University of Science and Technology, China, 2019 (in Chinese).
刘思余. 双热填丝等离子电弧增材制造工艺与组织性能研究. 硕士学位论文, 南京理工大学, 2019.
72 Zhu L D, Yang Z C, xin B, et al. Surface and Coatings Technology, 2021, 410, 126964.
73 Nie X W. Microstructure and property of WC/IN718 composite coating prepared by ultrasonic field assisted laser cladding. Master's Thesis, Jiangsu University, China, 2020 (in Chinese).
聂学武. 超声辅助激光熔覆WC/IN718复合涂层组织及性能研究. 硕士学位论文, 江苏大学, 2020.
74 Zhai L L, Ban C Y, Zhang J W. Optics and Laser Technology, 2019, 114, 81.
75 Huo K, Zhou J Z, Dai F Z, et al. Applied Surface Science, 2021, 545, 149078.
76 Cheng H M, Liu F C, Yang G, et al. Rare Metal Materials and Enginee-ring, 2018, 47(10), 2949.
77 Lyu X J. Microstructure regulation and performance studies on ultrasonic assisted laser remanufacturing of IN939 superalloy. Master's Thesis, Zhejiang University of Technology, China, 2020 (in Chinese).
卢习江. 超声辅助激光再制造IN939高温合金组织调控及性能研究. 硕士学位论文, 浙江工业大学, 2020.
78 Liang S D, Zhang A F, Wang T, et al. Chinese Journal of Lasers, 2017, 44(2), 234 (in Chinese).
梁少端, 张安峰, 王潭, 等. 中国激光, 2017, 44(2), 234.
79 Hu G F, Yang Y, Sun R, et al. Surface and Coatings Technology, 2020, 404, 126469.
80 Kalentics N, Boillat E, Peyre P, et al. Materials & Design, 2017, 130, 350.
81 Kalentics N, Sohrabi N, Tabasi H G, et al. Additive Manufacturing, 2019, 30, 100881.
82 Su J Z, He Z, Wang D Z, et al. Hot Working Technology, 2019, 48(24), 37 (in Chinese).
苏江舟, 何智, 王殿政, 等. 热加工工艺, 2019, 48(24), 37.
83 Sun N. Research on microstructure and properties of nickel-based alloys by ultrasonic-assisted CMT additive manufacturing. Master's Thesis, Shandong University, China, 2021 (in Chinese).
孙宁. 超声辅助CMT增材制造镍基合金组织与性能研究. 硕士学位论文, 山东大学, 2021.
84 Zhao X K, Zhao X H, Zha X H, et al. Science & Technology Review, 2021, 39(9), 48 (in Chinese).
罗学昆, 赵春玲, 查小辉, 等. 科技导报, 2021, 39(9), 48.
85 Zhao N Y, Cheng H, Hu Y X. Aeronautical Manufacturing Technology, 2021, 64(12), 47 (in Chinese).
赵念友, 程晗, 胡永祥. 航空制造技术, 2021, 64(12), 47.
86 Sun J F, Su A P, Wang T M, et al. International Journal of Fatigue, 2019, 119, 261.
87 Li P, Kong L H, Huang X, et al. Special Casting & Nonferrous Alloys, 2021, 41(8), 995 (in Chinese).
李鹏, 孔令华, 黄旭, 等. 特种铸造及有色合金, 2021, 41(8), 995.
88 Lu Y Z, Lei W N, Ren W B, et al. Surface Technology, 2020, 49(9), 233 (in Chinese).
鲁耀钟, 雷卫宁, 任维彬, 等. 表面技术, 2020, 49(9), 233.
89 Sheng J J, Wang L, Liu R, et al. Surface Technology, 2020, 49(6), 202 (in Chinese).
盛家锦, 王梁, 刘蓉, 等. 表面技术, 2020, 49(6), 202.
90 Sheng J J. Study of crack control and heat treatment of laser cladded IN939 nickel-based superalloy. Master's Thesis, Zhejiang University of Technology, China, 2020 (in Chinese).
盛家锦. 激光熔覆IN939镍基高温合金裂纹控制及热处理研究. 硕士学位论文, 浙江工业大学, 2020.
91 Zhang X C, Huang X W, Yang L, et al. Materials for Mechanical Engineering, 2016, 40(11), 22 (in Chinese).
张尧成, 黄希望, 杨莉, 等. 机械工程材料, 2016, 40(11), 22.
92 Yan W. Effect of heat treatment and friction shear deformation on microstructure and properties of laser cladding Inconel718 alloy. Master's Thesis, Yanshan University, China, 2017 (in Chinese).
闫伟. 热处理及摩擦剪切变形对激光熔覆Inconel718合金组织性能的影响. 硕士学位论文, 燕山大学, 2017.
93 Kirka M M, Medina F, Dehoff R, et al. Materials Science and Enginee-ring, A, 2017, 680, 338.
[1] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[2] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[3] 林志玮, 赵兴科, 赵增磊, 王世泽. 脉冲激光热爆箔法制备金属粉末试验及工艺优化[J]. 材料导报, 2022, 36(Z1): 21080257-6.
[4] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[5] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[6] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[7] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[8] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[9] 单腾, 王思捷, 殷凤仕, 乔玉林, 刘鹏飞. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.
[10] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[11] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[12] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[13] 周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
[14] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[15] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed