Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20171-20176    https://doi.org/10.11896/cldb.19100079
  高分子与聚合物基复合材料 |
乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征
陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰
中南林业科技大学材料科学与工程学院,长沙 410004
Preparation and Characterization of Lactic Acid Grafted Bamboo Fiber/Polylactic Acid Composites
CHEN Kang, HE Xiaoyu, LI Wenhao, WU Yiqiang, LI Xingong, ZUO Yingfeng
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 3005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乳酸接枝竹纤维和聚乳酸为原料,甘油、柠檬酸酯和甲酰胺(质量比为2∶3∶1)的复配物为增塑剂,制得乳酸接枝竹纤维/聚乳酸(LA-g-BF/PLA)复合材料。探讨了残余乳酸、乳酸接枝竹纤维/聚乳酸比例、增塑剂用量、热压温度和热压时间对复合材料力学性能及耐水性能的影响。同时,采用X射线衍射(XRD)仪、差示扫描量热(DSC)仪和热重分析(TGA)仪对复合材料进行了表征。结果表明,去除乳酸接枝竹纤维中的残余乳酸后,当乳酸接枝竹纤维与聚乳酸的质量比为3∶7、增塑剂用量为10%、热压温度为170 ℃、热压时间为6 min时,LA-g-BF/PLA复合材料的综合性能最佳。随着乳酸接枝竹纤维与聚乳酸质量比的增大,复合材料冷结晶温度和冷结晶焓值逐渐降低,结晶度逐渐增大,说明乳酸接枝竹纤维与聚乳酸之间的相互依赖性变差。特别是当乳酸接枝竹纤维与聚乳酸的质量比超过3∶7后,复合材料的界面相容性迅速变差,进而导致LA-g-BF/PLA复合材料的耐热性能下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈康
何啸宇
李文豪
吴义强
李新功
左迎峰
关键词:  乳酸接枝竹纤维  聚乳酸  复合材料  工艺优化  界面相容性  结晶结构  耐热性能    
Abstract: Lactic acid grafted bamboo fiber/polylactic acid (LA-g-BF/PLA) composites were prepared by using lactic acid grafted bamboo fiber and polylactic acid as raw materials, glycerol, citrate and formamide at a mass ratio of 2∶3∶1 as plasticizers. The effects of residual lactic acid, proportion of lactic acid grafted bamboo fiber/polylactic acid, amount of plasticizer, hot pressing temperature and time on mechanical properties and water resistance of the composites were discussed. The composites were characterized by X-ray diffraction (XRD), differential scanning ca-lorimeter (DSC) and thermogravimetric analyzer (TGA). The results showed that the comprehensive performance of LA-g-BF/PLA composite was the best when the mass ratio of lactic acid grafted bamboo fiber to polylactic acid was 3∶7, the amount of plasticizer was 10%, the hot pressing temperature was 170 ℃ and the hot pressing time was 6 min. With the mass ratio of lactic acid grafted bamboo fiber and polylactic acid, the cold crystallization temperature and enthalpy of the composites decreased gradually, and the crystallinity increased gradually. It was indicated that the interdependence between lactic acid-grafted bamboo fiber and polylactic acid became worse. Especially, when the mass ratio of lactic acid grafted bamboo fiber and polylactic acid exceeds 3∶7, the interfacial compatibility of the composites rapidly deteriorates, which leads to the decrease of heat resistance of LA-g-BF/PLA composites.
Key words:  lactic acid grafted bamboo fiber    polylactic acid    composite    process optimization    interface compatibility    crystalline structure    heat resistance
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TB332  
基金资助: 中国博士后科学基金特别资助项目(2017T100615);国家自然科学基金青年项目(31600460);国家级大学生研究性学习与创新性 实验计划项目(201810538006);湖湘青年英才计划(2019RS2040);湖南省教育厅科学研究重点项目(18A157)
通讯作者:  zuoyf1986@163.com   
作者简介:  陈康,中南林业科技大学,硕士研究生。2019年毕业于中南林业科技大学,获得工学学士学位。主要从事生物质复合材料研究。
左迎峰,中南林业科技大学,副教授。2014年毕业于东北林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院工作,主要从事生物质复合材料及胶黏剂改性研究。
引用本文:    
陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
CHEN Kang, HE Xiaoyu, LI Wenhao, WU Yiqiang, LI Xingong, ZUO Yingfeng. Preparation and Characterization of Lactic Acid Grafted Bamboo Fiber/Polylactic Acid Composites. Materials Reports, 2020, 34(20): 20171-20176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100079  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20171
1 Nugroho N, Ando N. Journal of Wood Science, 2001, 47(3), 237.
2 Liu Zhijia, Jiang Zehui, Fei Benhua, et al. Scientia Silvae Sinicae, 2012, 48(10), 140(in Chinese).
刘志佳, 江泽慧, 费本华, 等.林业科学, 2012, 48(10), 140.
3 Liu Yanjun, Xu Bin, Zhang Qisheng, et al. Journal of Forestry Engineering, 2016, 1(1), 2(in Chinese).
李延军, 许斌, 张齐生, 等.林业工程学报, 2016, 1(1), 2.
4 Bari E, Morrell J J, Sistani A, et al. Polymer Composites, 2019, 40(7), 2834.
5 Liu Wenhao, Wu Yiqiang, Li Ping, et al. Materials Review, 2018, 32(9), 3076(in Chinese).
李文豪, 吴义强, 李萍, 等.材料导报, 2018, 32(9), 3076.
6 Li Xingong, Zheng Xia, Wu Yiqiang. Acta Materiae Compositae Sinica, 2012 (4), 94(in Chinese).
李新功, 郑霞, 吴义强.复合材料学报, 2012 (4), 94.
7 Mao Hailiang, Zhou Haiming, Sheng Kuichuan, et al. Journal of Mate-rials Science and Engineering, 2012, 30(4), 586(in Chinese).
毛海良, 周海明, 盛奎川, 等.材料科学与工程学报, 2012, 30(4), 586.
8 Okubo K, Fujii T, Thostenson E T. Composites Part A: Applied Science and Manufacturing, 2009, 40(4), 469.
9 Zhang Y, Wu H, Qiu Y. Bioresource Technology, 2010, 101(20), 7944.
10 Tian Genlin, Yu Yan, Wang Ge, et al. Journal of Beijing Forestry University, 2010, 32(3), 166(in Chinese).
田根林, 余雁, 王戈, 等.北京林业大学学报, 2010, 32(3), 166.
11 Geng Y, Pei X, He X, et al. Polymers, 2018, 10(8), 920.
12 Li W, He X, Zuo Y, et al. InternationalJournal of Biological Macromolecules, 2019, 141, 325.
13 Zuo Y, Li W, Li P, et al. Industrial Crops and Products, 2018, 123, 646.
14 Li W, He X, Wang S, et al. Materials Science Forum, 2019, 956, 201.
15 Li Xingong, Ling Qifei, Wu Yiqiang. Journal of Functional Materials, 2013, 44(21), 3094(in Chinese).
李新功, 凌启飞, 吴义强.功能材料, 2013, 44(21), 3094.
16 He Wen, Chen Wenli, Chen Jia, et al. China Forestry Science and Technology, 2014, 28(3), 86(in Chinese).
何文, 陈雯丽, 陈佳, 等.林业科技开发, 2014, 28(3), 86.
17 Zeng J B, Jiao L, Li Y D, et al. Carbohydrate Polymers, 2011, 83(2), 762.
18 Zuo Yingfeng, Li Wenhao, Li Ping, et al. Journal of Forestry Enginee-ring, 2018, 3(1), 77(in Chinese).
左迎峰, 李文豪, 李萍, 等.林业工程学报, 2018, 3(1), 77.
19 Zuo Yingfeng, Gu Jiyou, Yang Long, et al. Journal of Functional Mate-rials, 2014, 45(5), 5087(in Chinese).
左迎峰, 顾继友, 杨龙, 等.功能材料, 2014, 45(5), 5087.
20 Wang Y, Zhang H, Li M, et al. Polymer Testing, 2015, 41, 163.
21 Zhou Shuai, Hou Pu, Li Yunlong, et al. Journal of Forestry Enginee-ring, 2019, 4(5), 92(in Chinese).
周帅, 候璞, 李云龙, 等.林业工程学报, 2019, 4(5), 92.
22 You Yingcai, Zhu Changying. Acta Polymerica Sinica, 2000 (6), 746(in Chinese).
由英才, 朱常英.高分子学报, 2000 (6), 746.
23 Zuo Y, Gu J, Yang L, et al. International Journal of Biological Macromolecules, 2014, 64, 174.24 Lv Shanshan, Cao Jun, Tan Haiyan, et al. Acta Materiae Compositae Si-nica, 2015, 32(2), 347(in Chinese).
吕闪闪, 曹军, 谭海彦, 等.复合材料学报, 2015, 32(2), 347.
25 Tu Kehua, Wang Liqun, Wang Yanbing. Polymeric Materials Science and Engineering, 2002, 18(5), 108(in Chinese).
涂克华, 王利群, 王焱冰.高分子材料科学与工程, 2002, 18(5), 108.
26 Zhang Yanhua, Yang Long, Zuo Yingfeng, et al. Journal of Building Materials, 2015, 18(6), 1111(in Chinese).
张彦华, 杨龙, 左迎峰, 等.建筑材料学报, 2015, 18(6), 1111.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[12] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[13] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[14] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[15] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed