Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21050219-10    https://doi.org/10.11896/cldb.21050219
  无机非金属及其复合材料 |
太阳能电池多晶硅表面激光制绒技术研究进展
成健, 廖建飞, 杨震, 孔维畅, 刘顿*
湖北工业大学机械工程学院中英超快激光研究中心,武汉 430068
Recent Developments of Laser Texturing Technology on the Surface Structuring of Polycrystalline Silicon Solar Cells
CHENG Jian, LIAO Jianfei, YANG Zhen, KONG Weichang, LIU Dun*
Center for Sino-UK Ultrafast Laser Processing Research, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 16910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能作为一种绿色可持续的清洁能源,可以转化为热能或电能,是传统能源最重要的替代品。多晶硅太阳能电池由于具有较低的成本而被广泛用于光伏发电领域,降低多晶硅片表面反射率是提升多晶硅太阳能电池效率的重要手段之一。本文分析了硅基太阳能绒面微结构的吸光原理,梳理了各类常见制绒方法。在此基础之上,总结了激光制绒的各类加工方法,概括了不同激光加工方法对多晶硅片表面绒面产生的相应效果,其中,激光复合方法制绒的效果普遍优于单一激光制绒。随后从激光加工工艺的角度,分析了激光加工主要参数对绒面微结构形貌的影响:由于不同波长下多晶硅材料的吸收率不同,各加工效果亦不相同;通过调整脉冲激光加工中的重复频率、扫描速度等参数,可影响制绒面凹坑间距进而改变绒面微结构的密度,通过调整功率、单脉冲能量等因素则影响微结构的烧蚀程度或深度;而入射角度、能量分布及脉宽对制绒亦有明显效果。对比发现,各典型绒面微结构的形貌中,V形纹理比U形纹理更能有效地捕捉吸收光线,而二维复合型陷光微结构比单一型陷光微结构吸光性更好。在此基础之上,论述了化学后处理对提升多晶硅片绒面质量的作用体现,表明化学后处理能改善或消除多晶硅片经激光制绒后形成的熔覆层等相关缺陷,经化学后处理后制成的多晶硅太阳能电池效率显著提高。文章最后对太阳能电池多晶硅表面激光制绒技术进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成健
廖建飞
杨震
孔维畅
刘顿
关键词:  激光制绒  反射率  化学后处理  多晶硅  太阳能电池    
Abstract: Solar energy is one of the most important substitutes for traditional fossil energy source due to its cleanness and sustainability, which can be absorbed and transferred into heat, and more importantly as electricity when converted via solar cell technology. Polycrystalline silicon solar cells are a widely adopted solar cell technology in the field of photovoltaic power generation. It is of great importance to overcome the problem faced by the solar cells, which is to reduce the incident light reflectivity of the solar cell panel surface in order to enhance the efficiency of the solar cells. In this paper, the light trapping principle is initially introduced, followed by the classifications of the commonly utilized surface texturing processes to reduce the undesired reflectivity. Specifically, laser related texturing methods are reported, as well as the analyses of the corresponding texturing effects on the surface of polycrystalline silicon prepared with different laser texturing methods. It is found that the laser-based hybrid micro-texturing technology overcomes the issues faced by the conventional direct laser texturing process. Furthermore, the effect of laser processing parameters on the surface texturing is analyzed, especially the corresponding light absorptance. Variation of the laser wavelength could affect the silicon surface morphology. Moreover, the tuning of key laser parameters, such as laser repetition rate and laser scanning speed can influence the density of the micro dimples on the surface of the solar cells. The depth of the ablated micro craters can also be tailored by altering the laser power and the pulse energy, as well as modulating the laser incident angle, energy distribution, and pulse duration. Among the typical microtextures, the V-shaped textures are more effective than the U-shaped textures, and 2D light trapping structures prevail over the 1D ones. In addition, the effects of chemical post-processing to enhance the micro structuring are also discussed. The enhancement of the performance of the polycrystalline silicon solar cells is achieved by improving or even diminishing the defects caused by heat-affected zone. Finally, a brief overview and prospect of the laser texturing technology on the surface structuring of polycrystalline silicon solar cell are given based on the above review.
Key words:  laser texturing    reflection    chemical post-processing    polycrystalline silicon    solar cell
发布日期:  2023-03-27
ZTFLH:  TM914.4  
基金资助: 中央军委装备预先研究基金项目(6141C25); 湖北省自然科学基金面上项目(2019CFB509)
通讯作者:  *刘顿,湖北工业大学机械学院教授、博士研究生导师。2002年6月在湖北工业大学获得机械工程学士学位,2004年9月在英国利物浦大学激光工程专业获得硕士学位,2011年2月在英国利物浦大学激光工程专业取得博士学位,2011—2012年在利物浦大学进行博士后研究工作。2012年回国后,先后入选湖北省“百人计划”项目、武汉光谷“3551”创新人才项目。长期从事激光应用技术的研发工作。作为负责人承担国家自然科学基金、国家支撑计划子课题、湖北省支撑计划等项目30余项,近年来发表学术论文53篇,获批发明专利20项。dun.liu@hbut.edu.cn   
作者简介:  成健,湖北工业大学机械学院副教授、硕士研究生导师。1997年6月在齐鲁工业大学获得机械工程学士学位,2004年6月在山东大学获得机械工程硕士学位,2010年7月在英国利物浦大学激光工程专业取得博士学位,2011—2016年在东北大学进行博士后研究工作。2010年7月回国后,先后入选辽宁省“百千万人才工程”项目、武汉光谷“3551”创新人才项目。主要从事激光与物质相互作用方面的研究工作。近年来,在激光物理、表面材料功能领域发表论文20余篇,包括Optics & Laser Technology、Applied Surface Science和《中国激光》等。
引用本文:    
成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
CHENG Jian, LIAO Jianfei, YANG Zhen, KONG Weichang, LIU Dun. Recent Developments of Laser Texturing Technology on the Surface Structuring of Polycrystalline Silicon Solar Cells. Materials Reports, 2023, 37(6): 21050219-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050219  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21050219
1 Chen L. Studies on enhancement efficiency of thin film silicon solar cells with high-efficiency surface light-trapping structure. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2017 (in Chinese).
陈乐. 高效表面陷光结构提升硅薄膜太阳能电池效率的研究. 博士学位论文, 上海交通大学, 2017.
2 Chen L, Wang Q K, Shen X Q, et al. Chinese Physics B, 2015, 24(10), 190.
3 Goetzberger A, Hoffmann V U. In: Photovoltaic Solar Energy Generation, Springer Berlin Heidelberg. Berlin, 2005, pp. 1465.
4 Dobrzański L A, Drygała A, Gołombek K, et al. Journal of Materials Processing Technology, 2008, 201(1-3), 291.
5 Liang Q C, Qiao F, Yang J, et al. Materials China, 2019(5), 505 (in Chinese).
梁启超, 乔芬, 杨健, 等. 中国材料进展, 2019(5), 505.
6 Wei S Y, Sun W H, Chen Z J, et al. Chin Sci Bull, 2016, 61(16), 1748 (in Chinese).
魏世源, 孙伟海, 陈志坚, 等. 科学通报, 2016, 61(16), 1748.
7 Zhao J, Wang A, Campbell P, et al. Electron Devices IEEE Transactions on, 1999, 46(10), 1978.
8 Spiegel M, Gerhards C, Huster F, et al. Solar Energy Materials and Solar Cells, 2002, 74(1), 175.
9 Zechner C, Hahn G, Jooss W, et al. In: 26th IEEE Photovoltaic Specialists Conference. Piscataway, USA, 1997, pp. 243.
10 Wang K, Feng S, Xu H, et al. Science China Technological Sciences, 2012, 55(6), 1509.
11 Chen S R, Liang Z C, Wang D L. AIP Advances, 2016, 6(3), 35320.
12 Wu X W, Li J Y. Journal of Inorganic Materials, 2020, 36(6), 9 (in Chinese).
武晓玮, 李佳艳. 无机材料学报, 2020, 36(6), 9.
13 Liu S, Niu X, Shan W, et al. Solar Energy Materials and Solar Cells, 2014, 127, 21.
14 Yoo J, Yu G, Yi J. Solar Energy Materials and Solar Cells, 2011, 95(1), 2.
15 Yoo J, Cho J, Ahn S, et al. Thin Solid Films, 2013, 546, 275.
16 Yoo J, Cho J, Han K, et al. Journal of the Korean Physical Society, 2012, 60(12), 2071.
17 Zhang T, Guo Y G, Qu X Y, et al. Journal of Synthetic Crystals, 2017, 46(10), 2090 (in Chinese).
张婷, 郭永刚, 屈小勇, 等. 人工晶体学报, 2017, 46(10), 2090.
18 Lee K, Ha M, Kim J H, et al. Solar Energy Materials and Solar Cells, 2011, 95(1), 66.
19 Park K M, Lee M B, Shin J W, et al. Solar Energy, 2013, 91, 37.
20 Zhang H, Lu Y. Applied Laser, 2015, 35(6), 699 (in Chinese).
张华, 陆燕. 应用激光, 2015, 35(6), 699.
21 Green M A, Keevers M J. Progress in Photovoltaics, 1995, 3(3), 189.
22 Viniūnas A. Journal of Laser Micro Nanoengineering, 2013, 8(3), 244.
23 Xu D F, Yin S Q, Xiao Z G, et al. Advanced Materials Research, 2012, 476, 1798.
24 Esther B V Y, Sriram R, Nilesh J V. Journal of Laser Micro Nanoengineering, 2015, 10(3), 334.
25 Chen X H, Li X, Wu C, et al. Applied Sciences, 2019, 9(9), 1882.
26 Zhang H, Zhou Y D, Lu Y. Laser Journal, 2016, 37(2), 94 (in Chinese).
张华, 周一丹, 陆燕. 激光杂志, 2016, 37(2), 94.
27 Xu J M, Chen C, Zhang T F, et al. Materials, 2017, 10(3), 260.
28 Pei S H, Xue W, Feng A X, et al. Applied Laser, 2013, 33(3), 318 (in Chinese).
裴绍虎, 薛伟, 冯爱新, 等. 应用激光, 2013, 33(3), 318.
29 Binetti S, Donne A L, Rolfi A, et al. Applied Surface Science, 2016, 371, 196.
30 Feng A X, Zhuang X H, Xue W, et al. Infrared and Laser Engineering, 2015, 44(2), 461 (in Chinese).
冯爱新, 庄绪华, 薛伟, 等. 红外与激光工程, 2015, 44(2), 461.
31 Radfar B, Es F, Turan R. In: 33rd European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam, 2017, pp. 706.
32 Radfar B, Es F, Turan R. Renewable Energy, 2020, 145, 2707.
33 Jia T D, Feng A X, Chen H, et al. Chinese Journal of Lasers, 2018, 45(10), 75 (in Chinese).
贾天代, 冯爱新, 陈欢, 等. 中国激光, 2018, 45(10), 75.
34 Lyu X Z, Ji L F, Wu Y, et al. Chinese Journal of Lasers, 2015, 42(4), 78 (in Chinese).
吕晓占, 季凌飞, 吴燕, 等. 中国激光, 2015, 42(4), 78.
35 Hua X S, Zhang Y J, Wang H W. Solar Energy Materials and Solar Cells, 2010, 94(2), 258.
36 Zhang W H, Song J Y, Zhang H L, et al. Journal of Shenyang Ligong University, 2014, 33(4), 62 (in Chinese).
张卫红, 宋建宇, 张红丽, 等. 沈阳理工大学学报, 2014, 33(4), 62.
37 Li R. Laser beam shaping and using it in the femtosecond laser micromachining. Master's Thesis, Xi'an Institute of Optics and Precision Mechanics of CAS, China, 2015 (in Chinese).
李睿. 光束整形及其在飞秒激光微加工领域的应用研究. 硕士学位论文, 中国科学院研究生院(西安光学精密机械研究所), 2015.
38 Hermann S, Dezhdar T. Journal of Applied Physics, 2010, 108(11), 1363.
39 Voisiat B, Indrišiūnas S, Raiukaitis G, et al. Medčiagotyra, 2014, 20(2), 157.
40 Dobrzański L A, Drygała A. Materials Science Forum, 2012, 706, 829.
41 Zielke D, Sylla D, Neubert T, et al. IEEE Journal of Photovoltaics, 2013, 3(2), 656.
42 Dobrzański L A, Dryga A A. Journal of Achievements in Materials & Ma-nufacturing Engineering, 2008, 29(1), 7.
43 Wang X M, Zhao R Q, Shen H, et al. Laser & Optoelectronics Progress, 2010, 47(1), 76 (in Chinese).
王学孟, 赵汝强, 沈辉, 等. 激光与光电子学进展, 2010, 47(1), 76.
44 Choi P, Kim J, Kim M, et al. Journal of the Korean Physical Society, 2015, 67(6), 991.
45 Kim K, Kim T, Park H, et al. Applied Surface Science, 2013, 264, 404.
46 Dobrzański L A, Drygaa A, Panek P, et al. Archives of Materials Science and Engineering, 2009, 38(1), 6.
47 Abbott M, Cotter J. Progress in Photovoltaics: Research and Applications, 2006, 14(3), 225.
48 Wang K X, Feng S M, Xu H T, et al. Acta Optica Sinica, 2012, 32(3), 288 (in Chinese).
王坤霞, 冯仕猛, 徐华天, 等. 光学学报, 2012, 32(3), 288.
49 She P, Zeng M L. Materials Reports, 2012, 26(24), 16 (in Chinese).
佘鹏, 曾梦麟. 材料导报, 2012, 26(24), 16.
50 Ding J M, Zou S, Choi J, et al. Solar Energy Materials and Solar Cells, 2020, 214, 110587.
51 Yang B, Lee M. Applied Surface Science, 2013, 284, 565.
52 Macdonald D H, Cuevas A, Kerr M J, et al. Solar Energy, 2004, 76(1-3), 277.
53 Janke S, Pingel S, Litzenburger B, et al. In: 28th Eu Pvsec. Berlin, Germany, 2013, pp. 3251.
54 Ha S H, Kim J H, Park S J. Molecular Crystals and Liquid Crystals, 2017, 645(1), 231.
55 Kim H S, Ha S H, Park S J, et al. Science of Advanced Materials, 2018, 10(5), 690.
[1] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[2] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[3] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[4] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[5] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[6] 李成, 李绍元, 马文会, 陈秀华, 刘家森, 王琦迪, 陶继尧. 石墨烯/硅肖特基结界面优化研究进展[J]. 材料导报, 2022, 36(21): 20080040-8.
[7] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[8] 孙宗宇, 吕杰, 阚志鹏, 段泰男, 陆仕荣. 基于苯并二噻吩的氟代小分子给体的合成、表征及光伏性能研究[J]. 材料导报, 2022, 36(14): 21020150-5.
[9] 范鸿志, 阿拉腾宝力格, 阿拉塔, 宁君, 塔娜, 特古斯. 可溶液加工对称A-D-A有机小分子太阳能电池给体材料研究进展[J]. 材料导报, 2022, 36(10): 20070075-11.
[10] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[11] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[12] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[13] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[14] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[15] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed