Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21020150-5    https://doi.org/10.11896/cldb.21020150
  高分子与聚合物基复合材料 |
基于苯并二噻吩的氟代小分子给体的合成、表征及光伏性能研究
孙宗宇1,2, 吕杰1,2, 阚志鹏1, 段泰男1, 陆仕荣1
1 中国科学院重庆绿色智能技术研究院薄膜太阳能技术研究中心,重庆 400714
2 中国科学院大学重庆学院,重庆 400714
Fluorinated Small Molecular Donors Based on Benzodithiophene: Synthesis, Characterizations and Photovoltaic Performance
SUN Zongyu1,2, LYU Jie1,2, KAN Zhipeng1, DUAN Tainan1, LU Shirong1
1 Thin-Film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2 Chongqing School,University of Chinese Academy of Sciences,Chongqing 400714, China
下载:  全 文 ( PDF ) ( 3716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对小分子给体进行氟代,往往能够通过拉深其最高占据分子轨道(HOMO)能级来提高光伏器件的开路电压,从而有助于获得更高的光电转化效率。本工作设计合成了含3′,4′-二氟-3,3″-二辛基三联噻吩结构的新型共轭单元,并通过Stille偶联、Knoevenegal缩合等反应进一步合成了以噻吩取代侧链的苯并二噻吩为核心、氟代三联噻吩为共轭桥、罗丹宁为封端基团的新型小分子电子给体光伏材料(命名为BDT4F-RO)。此分子的结构和初步的理化性能分别通过核磁共振波谱(1H NMR、13C NMR、19F NMR)、紫外-可见吸收光谱、循环伏安法和热重分析等进行测试表征。结果表明:薄膜状态下的BDT4F-RO 在 300~700 nm 均有较强的吸收,吸收边界位于690 nm。与不含氟原子的类似物BDT-RO相比,BDT4F-RO具有较深的HOMO能级,这也使得对应的光伏器件有更高的开路电压(0.95 V)。但是总体的效率上BDT4F-RO远逊于BDT-RO,这可能是氟原子的引入使得BDT4F-RO与受体分子IDIC的混溶性较差所致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宗宇
吕杰
阚志鹏
段泰男
陆仕荣
关键词:  氟代策略  苯并二噻吩  小分子给体  有机太阳能电池  光伏性能    
Abstract: The open circuit voltage of photovoltaic devices can often be improved by decreasing the highest occupied molecular orbital (HOMO) energy level,through the fluorination of small molecule donors, which is beneficial to obtaining higher photoelectric conversion efficiency (PCE). In this work, a new conjugated linker containing 3′,4′-difluoro-3,3″-dioctyltrithiophene unit was designed and synthesized. Through the Stille coupling, Knoevenegal condensation reactions and some other reactions, a new small molecule electron donor (namely BDT4F-RO) that with benzodithiophene substituted side chain as the core, fluoro tribithiophene as the conjugate bridge and rhodanine as the end group was synthesized. The molecular structure and properties were preliminarily characterized by NMR spectroscopy (1H NMR, 13C NMR and 19F NMR), UV-Vis spectroscopy, cyclic voltammetry (CV) and thermogravimetric analysis (TGA), respectively. The results show that BDT4F-RO exhibits strong absorption in 300—700 nm area in thin film, and the absorption onset is located at 690 nm. Compared with BDT-RO, the analogue without fluorine atoms, BDT4F-RO has a deeper HOMO energy level, which is beneficial to a higher open-circuit voltage(0.95 V) of the fabricated photovoltaic device. However, the photo-electron conversion efficiency of BDT4F-RO is generally inferior to that of BDT-RO, and this can be attributed to lo-wer miscibility of BDT4F-RO:IDIC blend that caused by fluorination.
Key words:  fluorination    benzodithiophene    small molecule donor    organic solar cells    photovoltaic performance
发布日期:  2022-07-26
ZTFLH:  O611.2  
基金资助: 国家自然科学基金(Y72Z250Q10)
通讯作者:  tnduan@cigit.ac.cn   
作者简介:  孙宗宇,2018年6月毕业于西安交通大学,获得学士学位。于2018年9月至2021年6月在中国科学院重庆绿色智能技术研究院学习,主要从事有机光伏材料的开发。
段泰男,中国科学院重庆绿色智能技术研究院副研究员。2008年6月毕业于武汉大学,获得有机化学学士学位,2013年6月毕业于武汉大学,获得有机化学博士学位。2017年加入中国科学院重庆绿色智能技术研究院工作至今,主要从事有机光电半导体功能材料的研究,在国内外重要期刊发表文章10余篇。
引用本文:    
孙宗宇, 吕杰, 阚志鹏, 段泰男, 陆仕荣. 基于苯并二噻吩的氟代小分子给体的合成、表征及光伏性能研究[J]. 材料导报, 2022, 36(14): 21020150-5.
SUN Zongyu, LYU Jie, KAN Zhipeng, DUAN Tainan, LU Shirong. Fluorinated Small Molecular Donors Based on Benzodithiophene: Synthesis, Characterizations and Photovoltaic Performance. Materials Reports, 2022, 36(14): 21020150-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020150  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21020150
1 Gunes S, Neugebauer H, Sariciftci N S, et al. Chemical Reviews, 2007, 107, 1324.
2 Lu L, Zheng T, Wu Q, et al. Chemical Reviews, 2015, 115, 12666.
3 Yao H, Ye L, Zhang H, et al. Chemical Reviews, 2016, 116, 7397.
4 Yao H, Wang J, Xu Y, et al. Accounts of Chemical Research, 2020, 53, 822.
5 Wang L, Guo S, Zhou K, et al. Sustainable Energy Fuels, 2020, 4, 4934.
6 Mo D, Chen H, Zhu Y, et al. ACS Applied Materials & Interfaces, 2021, 13(5), 6147.
7 Hou L, Lyu J, Wobben F, et al. ACS Applied Materials & Interfaces, 2020, 12(50), 56231.
8 Liu Q, Jiang Y, Jin K, et al. Science Bulletin, 2020, 65(4), 272.
9 Zhang S, Qin Y, Zhu J, et al. Advanced Materials, 2018, 30(20), 1800868.
10 Chen S, Liu Y, Zhang L, et al. Journal of the American Chemical Society, 2017, 139(18), 6298.
11 Zou Y, Dong Y, Sun C, et al. Chemistry of Materials, 2019, 31, 4222.
12 Chen J, Li Y, Zhu J, et al. Advanced Materials, 2018, 30, 1706083.
13 Yu R, Zhang S, Yao H, et al. Advanced Materials,2017,29,1700437.
14 Cui C, Guo X, Min J, et al. Advanced Materials, 2015, 27(45), 7470.
15 Kyaw A, Wang D, Gupta V, et al. Advanced Materials, 2013, 25, 2398.
16 Gao K, Li L, Lai T, et al. Journal of the American Chemical Society, 2015, 137(23), 7282.
17 Zhou J, Zuo Y, Wan X, et al. Journal of the American Chemical Society, 2013, 135(23), 8484.
18 Lee E, Tran D, Park J, et al. Organic Electronics, 2021, 88,105996.
19 He A, Qin Y, Dai W, et al. Chinese Chemical Letters, 2019, 30,2263.
20 Wu Q, Deng D, Zhang J, et al. Science China Chemistry,2019,62,837.
21 Gu H, Qin Y, Dai W, et al. Synthetic Metals, 2019, 251, 95.
22 Kawashima K, Fukuhara T, Suda Y, et al. Journal of the American Chemical Society, 2016, 138(32), 10265.
23 Duan T, Tang H, Liang R, et al. Journal of Materials Chemistry A, 2019, 7(6), 2541.
[1] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[2] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[3] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[4] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[5] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[6] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[7] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[8] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[9] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed