Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21040081-6    https://doi.org/10.11896/cldb.21040081
  无机非金属及其复合材料 |
碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索
孙红刚1,2, 司瑶晨2, 夏淼2, 李红霞1,2,*, 赵世贤2, 杜一昊2, 尚心莲2
1 北京科技大学材料科学与工程学院,北京 100083
2 中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,河南 洛阳 471039
Slag Resistance Mechanism of SiC-CA6 Composites: New Exploration of Chrome-free Refractories for Coal Gasification
SUN Honggang1,2, SI Yaochen2, XIA Miao2, LI Hongxia1,2,*, ZHAO Shixian2, DU Yihao2, SHANG Xinlian2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China
下载:  全 文 ( PDF ) ( 5308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高铬耐火材料具有优异的抗侵蚀性,虽存在铬危害,但长期以来作为水煤浆气化炉炉衬仍无可取代。为探索煤气化用耐火材料的无铬化,本研究采用碳化硅颗粒和六铝酸钙细粉为主要原料,经混料、压制成坯、高温烧成制备了碳化硅-六铝酸钙复合耐火材料(SiC-CA6,SCA),以气化炉煤灰渣为试验渣,分别采用静态坩埚法和回转抗渣法于1 500 ℃下进行抗渣试验,并与高铬材料进行平行对比,测量试样的侵蚀厚度、渗透厚度,观察裂纹,采用SEM、EDS、XRD等分析了抗渣试验前后耐火材料及渣的化学成分、相组成、微观结构等变化,以探究SCA的抗煤渣侵蚀机理。结果表明,SCA具有比高铬材料更优的抗渣渗透性和抗热震性,熔渣仅在SCA材料表面发生侵蚀反应,抗渣试验后试样内部无熔渣和裂纹。SCA的抗渣机制为:耐火材料中的SiC、六铝酸钙与熔渣在界面处反应形成了高黏度的Al2O3-SiO2-CaO玻璃相,封堵了表面气孔,并在耐火材料表面形成了结构致密的保护膜,阻止了熔渣向材料内部的渗透;该玻璃相与熔渣成分相近,向渣中扩散溶解缓慢,具有耐侵蚀性。SCA综合性能优异,具有应用于水煤浆气化炉的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙红刚
司瑶晨
夏淼
李红霞
赵世贤
杜一昊
尚心莲
关键词:  煤气化  无铬耐火材料  六铝酸钙  抗渣试验  碳化硅复合耐火材料    
Abstract: High chromium refractory has been used as the lining of coal water slurry gasifier for a long time because of its excellent corrosion resistance. It has been a problem for many years to replace it with chrome free refractories. Silicon carbide and calcium hexaaluminate composite refractories (SiC-CA6, SCA) were prepared by pressing and burning the mixture of silicon carbide particles and calcium hexaaluminate powders. The slag resistance tests with gasifier slag for high chromium refractory and SCA were carried out at 1 500 ℃ by crucible method and rotary slag resis-tance method, respectively. The erosion depth and penetration depth of the samples after slag tests were measured,and cracks were observed. The chemical compositions, phase compositions and microstructure of refractories and slags before and after slag tests were analyzed by SEM, EDS and XRD. The slag corrosion behavior and slag resistance mechanism of the new chrome-free refractory were explored. The results show that SCA has better slag penetration resistance and thermal shock resistance than high chromium refractory. The corrosion of SCA with slag is very weak because their reaction is only in the contact area. Once the slag infiltrates from the refractory surface, a kind of glass phase with high viscosity, whose components are mainly Al2O3, SiO2 and CaO, will be formed by the reaction of slag and refractory at the interface. And then the glass phase fills the pores and makes the dense microstructure. A shield with the similar chemical composition of slag is formed at the interface between slag and SCA, which effectively prevents the erosion and penetration of slag. SCA has the potential to be used in coal water slurry gasi-fier because of its excellent comprehensive properties.
Key words:  coal gasification    chrome-free refractory    calcium hexaaluminate    slag resistance test    silicon carbide composite refractories
发布日期:  2022-10-26
ZTFLH:  TQ175  
基金资助: 国家自然科学基金(U1604252;52072346)
通讯作者:  *lihongx0622@126.com   
作者简介:  孙红刚,博士,1999—2003年本科就读于四川大学无机非金属材料工程专业,2003—2005年硕士就读于四川大学材料学专业。主要研究方向为耐火材料与高温熔体的反应行为及其性能调控,主持和参与科研项目10余项,发表学术论文40余篇,获得授权发明专利约30项。
李红霞,博士,教授级高工,博导,中钢集团洛阳耐火材料研究院名誉院长。1987年本科毕业于天津大学无机非金属材料专业,1990年硕士毕业于天津大学无机非金属材料专业,1990—1994年在中科院上海硅酸盐研究所攻读博士学位,获工学博士学位。主要研究方向为耐火材料基础理论、原始创新研究,以及新产品开发及工程化研究。出版专著6部,发表学术论文近300篇,获得授权专利50余项。
引用本文:    
孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
SUN Honggang, SI Yaochen, XIA Miao, LI Hongxia, ZHAO Shixian, DU Yihao, SHANG Xinlian. Slag Resistance Mechanism of SiC-CA6 Composites: New Exploration of Chrome-free Refractories for Coal Gasification. Materials Reports, 2022, 36(20): 21040081-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040081  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21040081
1 Li H X, Sun H G. Refractories, 2018,52(2), 81(in Chinese).
李红霞, 孙红刚. 耐火材料, 2018, 52(2), 81.
2 Chen Z Y. Refractories, 2010, 44(S1), 6(in Chinese).
陈肇友. 耐火材料, 2010, 44(S1), 6.
3 Mao Y D, Liu L, Li K Z. Materials Reports B:Research Papers, 2020, 34(10), 20061(in Chinese).
毛燕东, 刘雷, 李克忠. 材料导报:研究篇, 2020, 34(10), 20061.
4 Kwong K, Bennett J, Nakano J. In: Ninth International Conference on Molten slags, fluxes and salts (Molten 12). Beijing, China, 2012, pp.403.
5 Li H X. Refractory for coal gasification and its engineering application, Chemical Industry Press, China, 2020(in Chinese).
李红霞. 煤气化装置用耐火材料与工程应用, 化学工业出版社, 2020.
6 Lim K. Interceram, 1983, 32(4), 34.
7 Bennett J P, Kwong K S. Metallurgical and Materials Transactions A, 2011, 42(4), 888.
8 Chen J, Xiao J, Zhang Y, et al. Journal of the American Ceramic Society, 2020, 103(5), 3299.
9 Bennett J P, Riggs B W, Kwong K S, et al. In: Proceedings of the Unified International Technical Conference on Refractories. Vancouver, Canada, 2013, pp.1197.
10 Sun H G, Chen J, Fan Z H, et al. Large Scale Nitrogenous Fertilizer Industry, 2011, 34(S2), 108(in Chinese).
孙红刚, 陈杰, 范志辉, 等. 大氮肥, 2011, 34(S2), 108.
11 Qian F, Duan X K, Yang W G, et al. Materials Reports A:Review Papers, 2019, 33(12), 3882(in Chinese).
钱凡, 段雪珂, 杨文刚,等. 材料导报:综述篇,2019,33(12),3882.
12 Li G H, Tian Z Q, Chen S J et al. Materials Reports, 2014, 28(Z1), 328(in Chinese).
李国华, 田志强, 陈树江, 等. 材料导报, 2014, 28(Z1), 328.
13 Mandal S, Kumar C J D, Kumar D, et al. Journal of the American Ceramic Society, 2020, 103(12), 7095.
14 Yan W, Li N. Materials Reports, 2008, 22(Z1), 412(in Chinese).
鄢文, 李楠. 材料导报, 2008, 22(Z1), 412.
15 CaI B L. Study on the corrosion mechanism of refractory materials for coal-water slurry gasifier. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018.(in Chinese).
蔡斌利. 水煤浆气化装置用耐火材料侵蚀机理研究. 博士学位论文, 北京科技大学, 2018.
16 Hemrick J G, Armstrong B, Rodrigues-Schroer A, et al. In: Proceedings of the Unified International Technical Conference on Refractories. Vancouver, Canada, 2013,pp.1211.
17 Bennett J P, Kwong K S, Powell C P, et al. In: 20th Annual Conference on Fossil Energy Materials. Knoxville, USA, 2006, pp.200.
18 Bie C, Sang S, Li Y, et al. Ceramics International, 2016, 42(12), 14161.
19 Dai L M, Xiao G Q, Ding D H. Materials Reports,, 2021, 35(3), 3057(in Chinese).
代黎明, 肖国庆, 丁冬海. 材料导报, 2021, 35(3), 3057.
20 Kwong K S, Bennett J P, Powell C A, et al.In: Unified International Technical Conference on Refractories. Orlando, Florida, USA, 2005, pp.70.
21 Sun H G, Xia L H, Tao L P, et al. In: The Unified International Technical Conference on Refractories. Santiago, Chile, 2017, pp.630.
22 Cai B L, Li H X, Zhao S X, et al. Refractories, 2016, 50(6), 411(in Chinese).
蔡斌利, 李红霞, 赵世贤, 等. 耐火材料, 2016, 50(6), 411.
23 Cai B L, Li H X, Zhao S X. Journal of the Chinese Ceramic Society, 2018,46(3), 434(in Chinese).
蔡斌利, 李红霞, 赵世贤, 等. 硅酸盐学报, 2018,46(3), 434.
24 Cai B, Li H, Zhao S, et al. Ceramics International, 2018, 44(5), 4592.
25 Li H X, Sun H G, Li P T, et al. Large Scale Nitrogenous Fertilizer Industry, 2018, 41(2), 80(in Chinese).
李红霞, 孙红刚, 李鹏涛, 等. 大氮肥, 2018, 41(2), 80.
26 Si Y C, Li H X, Sun H G, et al. Refractories, 2020, 54(1), 52(in Chinese).
司瑶晨, 李红霞, 孙红刚, 等. 耐火材料, 2020, 54(1), 52.
27 Si Y C. Study on coal slag corrosion resistance of SiC-CA6 composites. Master’s Thesis, Sinosteel Luoyang Institute of Refractories Research, China, 2020(in Chinese).
司瑶晨. SiC-CA6复合材料的抗煤渣侵蚀性能研究. 硕士学位论文,中钢集团洛阳耐火材料研究院, 2020.
28 Wang L. Preparation of SiC-MgAl2O4 composite and its resistance to coal slag corrosion. Master’s Thesis, Sinosteel Luoyang Institute of Refractories Research, China, 2019.(in Chinese).
王岚. SiC-MgAl2O4复合材料的制备及抗煤渣侵蚀性能研究. 硕士学位论文,中钢集团洛阳耐火材料研究院, 2019.
29 Si Y C, Xia M, Sun H G, et al. Refractories, 2021, 55(1), 40(in Chinese).
司瑶晨,夏淼, 孙红刚, 等. 耐火材料, 2021, 55(1), 40.
30 Wang L, Li H X, Sun H G, et al. Refractories, 2019, 53(5), 359(in Chinese).
王岚, 李红霞, 孙红刚, 等. 耐火材料, 2019, 53(5), 359.
[1] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed