Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22030038-9    https://doi.org/10.11896/cldb.22030038
  高分子与聚合物基复合材料 |
基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究
杨国梁1,†,*, 毕京九1,†, 董智文1, 刘依1, 韩子默1, 李旭光2
1 中国矿业大学(北京)力学与建筑工程学院,北京 100083
2 中航天建设工程集团有限公司,北京 100070
Experimental Study on Dynamic Tensile Properties of Hybrid Fiber Reinforced Concrete Based on Digital Image Correlation Technology
YANG Guoliang1,†,*, BI Jingjiu1,†, DONG Zhiwen1, LIU Yi1, HAN Zimo1, LI Xuguang2
1 School of Mechanics and Architectural Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 China Aerospace Construction Engineering Group Co., Ltd., Beijing 100070, China
下载:  全 文 ( PDF ) ( 27487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同纤维混杂比例下的钢-聚丙烯纤维混凝土(SPFRC)的动态抗拉性能,对六组不同纤维混杂比例的混凝土试件进行动态巴西劈裂试验,借助高速摄像仪和数字图像相关技术(DIC)对各组试样动态拉伸断裂过程进行记录和分析。研究表明:试件的应力时程曲线可以划分为缓速增长、快速增长、稳定、衰减和二次增长五个阶段,相较于素水泥砂浆试件,纤维混凝土试件在应力率二次增长后出现显著的稳定波动平台,纤维混凝土试件的动态拉伸破坏过程具有显著的延性特征;在总纤维掺量保持2%不变的条件下,混杂1%钢纤维与1%聚丙烯纤维的试件具有较优的动态抗拉强度和耗能能力;添加纤维可以减弱试件中心处的拉应变集中现象,混杂1.5%聚丙烯纤维和0.5%钢纤维的试件具有较优的开裂控制能力,平均开裂应变较素水泥砂浆试件提高了2.94倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨国梁
毕京九
董智文
刘依
韩子默
李旭光
关键词:  分离式霍普金森杆  数字图像相关技术  动态巴西劈裂试验  混杂纤维混凝土    
Abstract: In order to study the dynamic tensile properties of steel polypropylene fiber concrete (SPFRC) with different fiber hybrid ratio, six groups of concrete specimens with different fiber hybrid ratio were subjected to dynamic Brazilian splitting test. The dynamic tensile fracture process of each group of specimens was recorded and analyzed by means of high-speed camera and digital image correlation technology (DIC). The results show that the stress time history curve of the specimen can be divided into five stages:slow growth, rapid growth, stability, attenuation and se-condary growth. Compared with the plain cement mortar specimen, the fiber reinforced concrete specimen has a significant stable fluctuation platform after the secondary growth of the stress rate, and the failure process has significant ductility characteristics. When the total fiber content remains unchanged at 2%, the specimens mixed with 1% steel fiber and 1% polypropylene fiber have relatively better dynamic tensile strength and energy dissipation capacity. Adding fiber can weaken the tensile strain concentration at the center of the specimen. The specimen mixed with 1.5% polypropylene fiber and 0.5% steel fiber has better cracking control ability, and the average cracking strain is 2.94 times higher than that of plain cement mortar.
Key words:  split hopkinson pressure bar    digital image correlation technology    dynamic Brazilian disc test    hybrid fiber reinforced concrete
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU528.572  
通讯作者:  *杨国梁,中国矿业大学(北京)副教授、博士研究生导师。2009年3月北京理工大学获工程力学专业博士学位,2009年5月进入中国矿业大学(北京)大学工作至今。主要从事爆炸与冲击下岩石的破裂机理、结构爆破拆除的数值仿真、巷(隧)道的爆破掘进技术、爆炸灾害的控制等方面的教学与研究工作。主持参与横向、纵向课题8项,获得省部级科技奖励10项,出版著作2部,获得国家授权发明专利4项。yanggl531@163.com   
作者简介:  毕京九,2017年7月、2020年7月分别于大连大学和中国矿业大学(北京)获得工学学士学位和硕士学位。现为中国矿业大学(北京)力学与建筑工程学院博士研究生,在杨国梁副教授的指导下进行研究,目前主要研究领域为爆炸与冲击下岩石类材料的破裂机理。† 共同第一作者
引用本文:    
杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
YANG Guoliang, BI Jingjiu, DONG Zhiwen, LIU Yi, HAN Zimo, LI Xuguang. Experimental Study on Dynamic Tensile Properties of Hybrid Fiber Reinforced Concrete Based on Digital Image Correlation Technology. Materials Reports, 2023, 37(21): 22030038-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030038  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22030038
1 Qian S, Lepech M D, Yun Y K, et al. ACI Structural Journal, 2009, 106(1), 96.
2 Yang E H, Li V C. Cement & Concrete Research, 2012, 42(8), 1066.
3 Fischer G, Li V C. ACI Structural Journal, 2002, 99(6), 781.
4 Shaikh, Faiz, Uddin, et al. Cement & Concrete Composites, 2007, 29(5), 365.
5 Ahmaran M, Li V C. Cement and Concrete Research, 2009, 39(11), 1033.
6 Wang Z B, Zhang J, Wang Q. Journal of Building Materials, 2018, 21(2), 216(in Chinese).
王振波, 张君, 王庆. 建筑材料学报, 2018, 21(2), 216.
7 Xu L, Xu H, Chi Y, et al. Journal of Computational and Theoretical Nanoscience, 2011, 4(3), 911.
8 Gao D Y, Zhao L P, Chen G. China Civil Engineering Journal, 2017, 50(9), 46(in Chinese).
高丹盈, 赵亮平, 陈刚. 土木工程学报, 2017, 50(9), 46.
9 Li L, Cao M L. Acta Materiae Compositae Sinica, 2018, 35(5), 1349(in Chinese).
李黎, 曹明莉. 复合材料学报, 2018, 35(5), 1349.
10 Xu L H, Mei G D, Huang L, et al. China Civil Engineering Journal, 2014, 47(7), 35(in Chinese).
徐礼华, 梅国栋, 黄乐, 等. 土木工程学报, 2014, 47(7), 35.
11 Li L, Li Z L, Gao D Y, et al. Acta Materiae Compositae Sinica, 2021, 38 (7), 2326(in Chinese).
李黎, 李宗利, 高丹盈, 等. 复合材料学报, 2021, 38(7), 2326.
12 Ahmed S, Maalej M. Construction & Building Materials, 2009, 23(1), 96.
13 Xie L, Li Q H, Xu S H. Acta Materiae Compositae Sinica, 2021, 38(9), 3086(in Chinese).
谢磊, 李庆华, 徐世烺. 复合材料学报, 2021, 38(9), 3086.
14 Du X L, Dou G X, Li L, et al. Engineering Mechanics, 2011, 28(4), 138(in Chinese).
杜修力, 窦国钦, 李亮, 等. 工程力学, 2011, 28(4), 138.
15 Jiang G P, Huan S, Jiao C J, et. al. Journal of Sichuan University(Engineering Science Edition), 2009, 41(5), 82(in Chinese).
蒋国平, 浣石, 焦楚杰, 等. 四川大学学报(工程科学版), 2009, 41(5), 82.
16 Liang N H, Yang P, Liu X R, et al. Materials Reports, 2018, 32(2), 288(in Chinese).
梁宁慧, 杨鹏, 刘新荣, 等. 材料导报, 2018, 32(2), 288.
17 Yu X L, Fu Y Q, Dong X L, et al. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4), 1064. (in Chinese).
俞鑫炉, 付应乾, 董新龙, 等. 力学学报, 2019, 51(4), 1064.
18 Yang R S, Xu P, Jing C Z, et al. Journal of China Coal Society, 2019, 44(7), 2039(in Chinese).
杨仁树, 许鹏, 景晨钟, 等. 煤炭学报, 2019, 44(7), 2039.
19 Yang R S, Li W Y, Li Y L, et al. Journal of China Coal Society, 2020, 45(9), 3107(in Chinese).
杨仁树, 李炜煜, 李永亮, 等. 煤炭学报, 2020, 45(9), 3107.
20 Poojari Yugendar, Kampilla Vishnu. Materials Today:Proceedings, 2021, 43(P2), 1659.
21 Yang R Z, Xu Y, Chen P Y, et al. Materials Reports, 2021, 35(10), 10062(in Chinese).
杨荣周, 徐颖, 陈佩圆, 等. 材料导报, 2021, 35(10), 10062.
22 Ping Q, Ma Q Y, Yuan P. Chinese Journal of Mining and Safety Engineering, 2013, 30(3), 401(in Chinese).
平琦, 马芹永, 袁璞. 采矿与安全工程学报, 2013, 30(3), 401.
[1] 邹田春, 秦嘉徐, 李龙辉, 符记, 刘志浩, 牟浩蕾. 钛合金-芳纶纤维复合材料单搭接接头渐进失效分析[J]. 材料导报, 2020, 34(20): 20143-20146.
[2] 张文华, 刘鹏宇, 吕毓静. 超高性能混凝土动态力学性能研究进[J]. 材料导报, 2019, 33(19): 3257-3271.
[3] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed