Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3257-3271    https://doi.org/10.11896/cldb.18100142
  无机非金属及其复合材料 |
超高性能混凝土动态力学性能研究进
张文华1,2, 刘鹏宇1, 吕毓静1
1 南京林业大学土木工程学院,南京 210037;
2 江苏省建筑科学研究院,南京 210008
Dynamic Mechanical Property of UHPCs: a Review
ZHANG Wenhua1,2, LIU Pengyu1, LYU Yujing1
1 Department of Civil Engineering, Nanjing Forestry University, Nanjing 210037;
2 Jiangsu Research Institute of Building Science, Nanjing 210008
下载:  全 文 ( PDF ) ( 4061KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete, UHPC)是一种具有超高强度、超高韧性、超高抗力和优异耐久性的新型水泥基复合材料。自从加拿大建成第一座超高性能混凝土步行桥之后,超高性能混凝土被广泛应用于桥梁工程中。随着我国大型基础设施领域的拓展和建设水平的提高,超高性能混凝土在超高层建筑、大跨桥梁、海上石油平台、核反应堆安全壳和军事防护工程的应用也越来越广泛。服役于桥梁工程、核电工程和军事工程的UHPC除了承受常规的荷载外,还常遭受撞击、振动、冲击、爆炸和弹体侵彻等动态冲击荷载。目前的研究表明,UHPC材料在动态冲击荷载作用下表现出与在常规静态和准静态作用下显著不同的效应。
超高性能混凝土的动力学研究需解决两大难题:(1)高应变率试验条件与装置——动态力学性能的研究与应变率相关,应变率越高,所需要的试验条件越苛刻;(2)动态冲击本构模型——对于实施难度大或经费要求高的试验,数值模拟是非常有益的辅助手段,但强荷载冲击混凝土材料的过程非常剧烈,要考虑的耦合因素也很多,因此准确选用模型成了数值模拟的一大难题。
近几年,为了满足UHPC动力学性能试验的要求,研究人员在传统动力学试验设备的基础上发展了适用应变率范围更广,加载方式更全面的新型动力学试验设备。此类新型设备不仅为UHPC的动力学试验提供了更广泛的试验范围,更保证了动力学试验的准确性。在理论研究方面,研究者通过大型试验得到了UHPC的动态本构模型,并结合LS-DYNA软件对冲击、爆炸过程进行了数值模拟。这些数学模型将保证动力学仿真模拟的准确性,具有极大的参考价值。
本文从研究动态性能试验设备和UHPC材料动态力学性能两个方面展开综述,动态性能试验设备主要包括液压机、落锤、霍普金森杆、侵彻系统、爆炸系统和其他试验系统六个方面,详细介绍了试验原理和设备的组成,并分析归纳了上述设备在UHPC动力学性能试验中的应用; UHPC动态力学性能包括冲击压缩、冲击拉伸、层裂、侵彻和爆炸五个方面,全面介绍了原材料、配合比、应变率等因素对各性能的影响及动力学性能的变化规律,以期为后期的UHPC动力学性能试验方法及试验结果分析提供参考思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文华
刘鹏宇
吕毓静
关键词:  分离式霍普金森杆(SHPB)  爆炸冲击  超高性能混凝土  动态力学  冲击    
Abstract: Ultra-high performance concrete (UHPC) is a new type of cement matrix composite material with ultra-high strength, ultra-high toughness, ultra-high resistance and excellent durability. Since Canada has built the first ultra-high performance concrete pedestrian bridge, ultra-high performance concrete is increasingly used in bridge engineering. With the development of large-scale infrastructure and the improvement of construction level in China, ultra-high performance concrete will have more and more extensive application prospects in ultra-high-rise buildings, long-span bridges, offshore oil platforms, nuclear reactor containment shells and military protection projects. UHPC, which is used in bridge engineering, nuclear power engineering and military engineering, is often subjected to dynamic impact loads such as impact, vibration, impact, blast and projectile penetration in addition to conventional loads. The current research shows that UHPC materials show significantly different effects from conventional static and quasi-static materials under dynamic impact load.
The dynamic research of ultra-high performance concrete needs to solve two major problems: (1) high strain rate test conditions and devi-ces — the research of dynamic mechanical properties is related to strain rate, the higher the strain rate, the more stringent the test conditions required;(2) dynamic impact constitutive model — numerical simulation is a very useful auxiliary means for the implementation of difficult or expensive tests. However, the process of strong load impacting concrete material is very intense, and there are many coupling factors to be considered, so the accurate selection of the model has become a major problem in numerical simulation.
In recent years, in order to meet the requirements of UHPC dynamic performance test, researchers have developed a new type of dynamic test equipment with wider strain rate range and more comprehensive loading mode based on traditional dynamic test equipment. This new type of equipment not only provides a wider range of dynamic test for UHPC, but also guarantees the accuracy of dynamic test. In terms of theoretical research, researchers obtained the dynamic constitutive model of UHPC through large-scale experiments, and conducted numerical simulation of the impact and explosion process by combining LS-DYNA software. These mathematical models will guarantee the accuracy of dynamic simulation and have great reference value.
This paper studies the dynamic performance test equipment and materials UHPC dynamic mechanical performance were reviewed in two aspects, the dynamic performance test equipment mainly includes hydraulic press, drop hammer, Hopkinson bar, penetration test system, explosion and other test system in six aspects, the system introduces the test principle and equipment composition, analysis, it concludes the equipment in the application of dynamic performance test of UHPC. The dynamic mechanical properties of UHPC include impact compression, impact tensile, laminar fracture, penetration and explosion. The influences of raw materials, mix ratio, strain rate and other factors on various properties and the changing laws of dynamic properties are comprehensively introduced. It is expected that this paper can provide reference ideas for future UHPC dynamic performance test methods and test results analysis.
Key words:  split Hopkinson pressure bar (SHPB)    blast    ultra-high performance concrete (UHPC)    dynamic mechanics    impact
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  O347.3  
基金资助: 国家自然科学基金面上项目(51678309);江苏省自然科学基金面上项目(BK20161529);中国博士后基金面上项目(2016M600351);江苏省博士后基金面上项目(1601028B);江苏高校优势学科建设工程资助项目(PAPD)
作者简介:  张文华,南京林业大学土木工程学院,建筑工程系,副教授,硕士生导师。2013年毕业于东南大学,获工学博士学位。现为中国硅酸盐学会固废分会青年委员会委员,RILEM(国际材料与结构研究实验联合会)会员,国际期刊Construction and Building Materials,Science and Engineering of Composites Materials审稿人。主要研究方向为超高性能混凝土动态力学行为。zhangwenhua2009@163.com
引用本文:    
张文华, 刘鹏宇, 吕毓静. 超高性能混凝土动态力学性能研究进[J]. 材料导报, 2019, 33(19): 3257-3271.
ZHANG Wenhua, LIU Pengyu, LYU Yujing. Dynamic Mechanical Property of UHPCs: a Review. Materials Reports, 2019, 33(19): 3257-3271.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100142  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3257
1 Li Xinping, Liu Kai, Huang Junhong, et al. Fouctional Materials,2017,48(3),3022(in Chinese). 李新平,刘凯,黄俊红,等.功能材料,2017,48(3),3022.2 Shao Xudong, Qiu Minghong, Yan Banfu, et al. Materials Review A: Review Papers,2017,31(12),33(in Chinese). 邵旭东,邱明红,晏班夫,等.材料导报:综述篇,2017,31(12),33.3 Zhang Yunsheng, Zhang Wenhua, Chen Zhenyu. Materials Review A: Review Papers,2017,31(12),1(in Chinese).张云升,张文华,陈振宇.材料导报:综述篇,2017,31(12),1.4 Zhang Wenhua, Chen Zhenyu. Materials Review A: Review Papers,2017,31(12),103(in Chinese). 张文华,陈振宇.材料导报:综述篇,2017,31(12),103.5 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials,2015,101,741.6 Wang D, Shi C, Wu Z, et al. Construction and Building Materials,2015,96,368.7 He S, Qiu J, Li J, et al. Cement and Concrete Research,2017,98,50.8 Wu Z, Shi C, He W, et al. Cement and Concrete Composites,2017,79,148.9 Ghafari E, Costa H, Júlio E. Cement and Concrete Composites,2015,55,17.10 Pajak M. The Silesian University of Technology,2011,3,78.11 Sukhoon Pyo. Characteristics of ultra high performance concrete subjected to dynamic loading. Ph.D. Thesis, University of Michigan, USA,201412 Malvar L J, Crawford J E. In:Twenty-Eighth DDESB Seminar. Orlando,1998,pp.1.13 Jiao Chujie, Sun Wei, Gao Peizheng. Engineering Mechanics,2006,23(8),86(in Chinese). 焦楚杰,孙伟,高培正.工程力学,2006,23(8),86.14 Millon O, Riedel W, Thoma K, et al. EDP Sciences,2009,1(10),1671.15 Tran N T, Tran T K, Jeon J K, et al. Cement and Concrete Research,2016,79,169.16 Tuan Ngo, Priyan M, Andrew W. International Journal of Protective Structures,2013,3(4),451.17 Tai Y S. Theoretical and Applied Fracture Mechanics,2009,52(1),14.18 Schröfl C, Gruber M, Plank J. Cement and Concrete Research,2012,42(11),1401.19 Hadi M, Al-Tikrite A. Construction and Building Materials,2017,156,293.20 Pyo S, Alkaysi M, El-Tawil S. Construction and Building Materials,2016,114,109.21 Fladr J, Bily P. Composite Part B: Engineering,2018,138,77.22 He Wen. The effect of strengthing and toughening of steel fiber on ultra high performance cocrete. Master’s Thesis, Hunan University, China,2015(in Chinese).何稳.钢纤维在超高性能混凝土中增强增韧作用的研究.硕士学位论文,湖南大学,2015.23 Liang Xiaoyan, Wang Yonghua, Wang Zhengdao. Journal of Beijing Jiaotong University,2008,32(4),58(in Chinese).梁小燕,王勇华,王正道.北京交通大学学报,2008,32(4),58.24 French R, Maher E, Smith M, et al. International Journal of Impact Engineering,2017,108,89.25 Lee O S, Han M S, Baek J H, et al. Key Engineering Materials,2004,261(1662),289.26 Rehacek S, Hunka P, Kolisko J, et al. Procedia Engineering,2013,65,278.27 Verma M, Prem P R, Rajasankar J, et al. Materials & Design,2016,92,853.28 Aghajani-Namin A. Strain rate sensitivity of ultra-high performacne fiber reinforced concrete.Ph.D. Thesis, Ryerson University, Canada,2014.29 Ranade R, Li V C, Heard W F, et al. Cement and Concrete Research,2017,98,24.30 Huynh L, Foster S, Valipour H, et al. Construction and Building Mate-rials,2015,78,153.31 Xia K, Yao W. Rock Mechanics and Geotechnical Engineering,2015,7(1),27.32 Groeneveld A B, Ahlborn T M, Crane C K, et al. International Journal of Impact Engineering,2017,2018(111),37.33 Ren Xingtao, Zhou Tingqing, Zhong Fangping, et al. Explosion and Shock Waves,2011,31(5),540(in Chinese). 任兴涛,周听清,钟方平,等.爆炸与冲击,2011,31(5),540.34 Cadoni E, Dotta M, Forni D, et al. EDP Sciences,2015,01031(94),1.35 Bragov A, Konstantinov A, Lomunov A, et al. EDP Sciences,2015,01020(94),1.36 Lai Jianzhong, Sun Wei, Rong Zhidan. Explosion and Shock Waves,2008(6),532(in Chinese). 赖建中,孙伟,戎志丹.爆炸与冲击,2008(6),532.37 Sun Wei, Jiao Chujie. Journal of Guangzhou University (Natural Science Edition),2011,10(1),42(in Chinese). 孙伟,焦楚杰.广州大学学报(自然科学版),2011,10(1),42.38 Rong Zhidan, Sun Wei. Explosion and Shock Waves,2009,29(4),361(in Chinese). 戎志丹,孙伟.爆炸与冲击,2009,29(4),361.39 Liu Jianzhong, Sun Wei, Liu Jiaping, et al. Journal of Hebei University of Technology,2014,43(6),43(in Chinese). 刘建忠,孙伟,刘加平,等.河北工业大学学报,2014,43(6),43.40 Tian Zhimin, Wu Huajie, Jiang Xiquan, et al. Journal of PLA University of Science and Technology (Natural Science Edition),2007,8(5),463(in Chinese). 田志敏,吴华杰,姜锡权,等.解放军理工大学学报(自然科学版),2007,8(5),463.41 Tian Zhimin, Wu Ping’an, Du Xiuli. Journal of Beijing University of Technology,2010(4),482(in Chinese). 田志敏,吴平安,杜修力.北京工业大学学报,2010(4),482.42 Chen Wanxiang, Guo Zhikun, Jiang Meng, et al. Vibration and Shock,2016,35(20),160(in Chinese).陈万祥,郭志昆,姜猛,等.振动与冲击,2016,35(20),160.43 Guo Zhikun, Chen Wanxiang, Jiang Meng, et al. Vibration and Shock,2017,36(10),134(in Chinese).郭志昆,陈万祥,姜猛,等.振动与冲击,2017,36(10),134.44 Wang Jinghai, Chen Wanxiang, Zou Huihui, et al. Journal of PLA University of Science and Technology (Natural Science Edition),2016,17(6),539(in Chinese) 王景海,陈万祥,邹慧辉,等.解放军理工大学学报(自然科学版),2016,17(6),539.45 Jiang Meng, Guo Zhikun, Chen Wanxiang, et al. Explosion and Shock Waves,2017,37(3),405(in Chinese). 姜猛,郭志昆,陈万祥,等. 爆炸与冲击,2017,37(3),405.46 Wang Y, Wang Z, Liang X, et al. Acta Mechanica Solida Sinica,2008,21(5),420.47 Qin Lianwei. The research on the dynamic performance of grading steel-fiber reinforced reactive powder concrete. Master’s Thesis, Hunan University, China,2007(in Chinese). 秦联伟.级配钢纤维活性粉末混凝土动态性能研究.硕士学位论文,湖南大学,2007.48 Li Dan, Jiang Yaqiong, Zhao Li. Journal of Hebei North University (Natural Science Edition),2017,33(3),16(in Chinese).李丹,蒋亚琼,赵莉.河北北方学院学报(自然科学版),2017,33(3),16.49 Ju Yang, Sheng Guohua, Liu Hongbin, et al. Scientia Sinica (Technology),2010,40(12),1437(in Chinese).鞠杨,盛国华,刘红彬,等.中国科学:技术科学,2010,40(12),1437.50 Mostafa Hassan K W C. Construction and Building Materials,2017,144,747.51 Wang Yonghua. Study on the impact compressive behavior of reactive powder concretes. Master’s Thesis, Beijing Jiaotong University, China,2007(in Chinese). 王勇华.活性粉末混凝土冲击压缩性能研究.硕士学位论文,北京交通大学,2007.52 Liang Xiaoyan. Experimental and theoretical study on impact compressibility of reactive powder concrete. Master’s Thesis, Beijing Jiaotong University, China,2008(in Chinese).梁小燕.活性粉末混凝土冲击压缩性能的实验及理论研究.硕士学位论文,北京交通大学,2008.53 Chen Z T, Yang Y Z, Yao Y. Applied Mechanics and Materials,2012,174,1507.54 Mohammad R, Khosravani M S K W. Theoretical and Applied Fracture Mechanics,2017,93,302.55 Ristak N, Guan J, Kasmuri M, et al. In: CAASR International Confe-rence on Innovative Engineering and Technologies. Malaysia,2015,pp.86.56 Curosu I, Mechtcherine V, Forni D, et al. Cement and Concrete Research,2017,102,16.57 Fenu L, Forni D, Cadoni E. Composites Part B,2016,92,142.58 Forquin P, Arias A, Zaera R. International Journal of Impact,2007,35(3),1.59 Ren F, Mattus C H, Wang J A, et al. Cement & Concrete Composites,2013(41),1.60 Wang Yaohua, Xiao Yanni, Bi Yajun, et al. Journal of PLA University of Science and Technology (Natural Science Edition),2008,9(1),57(in Chinese). 王耀华,肖燕妮,毕亚军,等.解放军理工大学学报(自然科学版),2008,9(1),57.61 Yu R, Spiesz P, Brouwers H J H. Cement and Concrete Composites,2016,68,109.62 Sovják R, Vaviník T, Máca P, et al. Procedia Engineering,2013,65,120.63 Sovják R, Iník T V, Frydryn M, et al. Structures Under Shock and Impact XIII, WIT Press, UK,2014.64 Máca P, Sovják R. Structures Under Shock and Impact Ⅻ, WIT Press, UK,2012.65 Riedel W, Nöldgen M, Straβburger E, et al. Nuclear Engineering and Design,2010,240(10),2633.66 Lai J, Guo X, Zhu Y. International Journal of Impact Engineering,2015,84,1.67 Lai Jianzhong, Guo Xujia, Zhu Yaoyong. Journal of Heibei University of Technology,2014,43(6),50(in Chinese). 赖建中,过旭佳,朱耀勇.河北工业大学学报,2014,43(6),50.68 Rong Zhidan, Sun Wei, Zhang Yunsheng, et al. Journal of Ballistics,2010,22(3),63(in Chinese). 戎志丹,孙伟,张云升,等.弹道学报,2010,22(3),63.69 Thai D K, Kim S E, Lee H K. Nuclear Engineering and Design,2014(276),228.70 Thai D K, Kim S E. Engineering Failure Analysis,2015,57,88.71 Thai D K, Kim S E. Case Studies in Structural Engineering,2015,5,38.72 Zhang T, Wu H, Fang Q, et al. International Journal of Impact Enginee-ring,2017,109,276.73 Liu J, Wu C, Li J, et al. International Journal of Impact Engineering,2017(109),131.74 Liu J, Wu C, Chen X. Construction and Building Materials,2017,135,447.75 Smith J, Cusatis G, Pelessone D, et al. International Journal of Impact Engineering,2014,65,13.76 Li J, Wu C, Hao H, et al. Engineering Structures,2017,134,289.77 Li J, Wu C, Hao H. Materials & Design,2015,5(82),64.78 Yi N, Kim J J, Han T, et al. Construction and Building Materials,2012,28,694.79 Bengar H A, Yavari M R. Rehabilitation in Civil Engineering,2016,1(4),63.80 Wu C, Oehlers D J. Engineering Structures,2009,31,2060.81 Zhang F, Wu C, Zhao X L, et al. Engineering Structures,2017,149,50.82 Zhang F, Wu C, Zhao X L, et al. International Journal of Impact Engineering,2016,93,184.83 Chen Wanxiang, Guo Zhikun, Zou Huihui, et al. Engineering Mecha-nics,2017,34(1),180(in Chinese).陈万祥,郭志昆,邹慧辉,等.工程力学,2017,34(1),180.84 Lei M, Barnett S, Begg D, et al. International Journal of Impact Engineering,2014,64,91.85 Li J, Wu C, Hao H, et al. International Journal of Impact Engineering,2016,93,62.86 Li J, Wu C, Hao H. Engineering Structures,2015,102,395.87 Tan Keke, Ge Tao, Chen Wei, et al. Blasting,2007,24(1),6(in Chinese).谭可可,葛涛,陈伟,等.爆破,2007,24(1),6.88 Wang Derong, Song Hua, Zhao Yuelang, et al. Blasting,2006,23(3),5(in Chinese). 王德荣,宋华,赵跃堂,等.爆破,2006,23(3),5.89 Wang Derong, Dai Ming, Li Jie, et al. Explosion and Shock Waves,2008,28(1),67(in Chinese).王德荣,戴明,李杰,等.爆炸与冲击,2008,28(1),67.90 Zou Huihui, Chen Wanxiang, Guo Zhikun, et al. Vibration and Shock,2016,35(13),1(in Chinese).邹慧辉,陈万祥,郭志昆,等.振动与冲击,2016,35(13),1.91 Ellis B D, Dipaolo B P, Mcdowell D L, et al. International Journal of Impact Engineering,2014,69,95.92 Xu Shenchun, LiuZhongxian, Wu Chengqing. Explosion and Shock Waves,2017,37(4),649(in Chinese). 徐慎春,刘中宪,吴成清.爆炸与冲击,2017,37(4),649.93 Yu R, Spiesz P, Brouwers H J H. Construction and Building Materials,2014,68(Supplement C),158.94 Ming Ju Lee M L Y H. IACSIT International Journal of Engineering and Technology,2013,4(5),452.95 Garcia B, Villard P, Richefeu V, et al. In: 8th International Conference on Micromechanics on Granular Media. Montpellier,2017.96 Yoo D, Banthia N. Cement and Concrete Composites,2016,73,267.97 Wille K, El-Tawil S, Naaman A E. High performance fiber reinforced cement composites 6: HPFRCC 6, Springer, Germany,2012.98 Wille K, El-Tawi M X, Naaman A E. Materials and Structures,2016,49(4),1351.99 Pyo S, El-Tawi S. Construction and Building Materials,2015,81,76.100 Cadoni E, Meda A, Plizzari G A. Materials and Structures,2009,42(9),1283.101 Park J K, Kim S, Kim D J. Composite Structures,2017,162,313.102 Wu Z, Shi C, He W,et al. Cement and Concrete Composites,2017,79,148.103 Ren G M, Wu H, Fang Q, et al. Construction and Building Materials,2018,164,29.104 Farnam Y, Mohammadi S, Shekarchi M. International Journal of Impact Engineering,2010,37(2),220.105 Othman H, Marzouk H, Sherif M. Construction and Building Materials,2019,195,547.106 Su Y, Li J, Wu C, et al. Construction and Building Materials,2016,114,708.107 Su Y, Li J, Wu C, et al. Composites Part B,2016,91,595.108 Wu Pengtao, Liu Zhongxian, Wu Chengqing, et al. Bulletin of the Chinese Ceramic Society, 2016,35(11),3546(in Chinese) 仵鹏涛,刘中宪,吴成清,等.硅酸盐通报,2016,35(11),3546.109 Hou X, Cao S, Rong Q, et al. Construction and Building Materials,2018,170,570.110 Quan Changqing, Luo Haijuan, Lin Jun, et al. Guangdong Building Materials,2015(3),41(in Chinese).权长青,罗海娟,林俊,等.广东建材,2015(3),41.111 Rong Zhidan, Sun Wei, Zhang Yunsheng. Journal of PLA University of Science and Technology(Natural Science Edition),2009,10(6),542(in Chinese).戎志丹,孙伟,张云升.解放军理工大学学报(自然科学版),2009,10(6),542.112 Zhang Wenhua. Investigation of microstructure formation mechanism and dynamic mechanical behavior of UHPCC. Ph.D. Thesis, Southeast University, China,2013(in Chinese). 张文华.超高性能水泥基复合材料微结构形成机理及动态力学行为研究.博士学位论文,东南大学,2013.113 Lai Jianzhong, Sun Wei. Engineering Mechanics,2009,26(1),137(in Chinese). 赖建忠,孙伟.工程力学,2009,26(1),137.114 Lai Jianzhong, Sun Wei. In: 12th National Fiber Concrete Academic Conference. Beijing, China,2008(in Chinese). 赖建中,孙伟.第十二届全国纤维混凝土学术会议.北京,2008.115 Zhang Canguang. Experimental research onspalling strength of reactive powder concrete. Master’s Thesis, Hunan University, China,2008(in Chinese). 张灿光.活性粉末混凝土层裂强度的试验研究.硕士学位论文,湖南大学,2008.116 Chen Baisheng, Xiao Yan, Huang Zhengyu, et al. Journal of Hunan University (Natural Sciences),2009,36(7),12(in Chinese).陈柏生,肖岩,黄政宇,等.湖南大学学报(自然科学版),2009,36(7),12.117 Yoo D, Banthia N. Construction and Building Materials,2017,149,416.118 Zhang Yunsheng, Sun Wei, Liu Sifeng, et al. Cement and Concrete Composites,2008,30(9),831.119 Curosua I, Mechtcherinea V, Fornib D, et al. Cement and Concrete Rsearch,2017,102,16.120 Millon O, Kleemann A, Stolz A. In: First International Interactive Symposium on UHPC. Montpellier, Lowa,2016,pp.1.121 Oliver Millon A K. Development of high resistant smart elements, Elasstic, EU,2015.122 Khosravani M R, Bilgen C, Weinberg K.In: Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry. Stuttgart,2017.123 Mechtcherine V, Millon O, Butler M, et al. Cement and Concrete Composites,2011,33(1),1.124 Tai Y S, El-Tawil S, Chung T H. Cement and Concrete Research,2016,89,1.125 Li H, Xu S. Journal of Zhejiang University-Science A,2016,6(17),417.126 Thomas R J, Sorensen A D. Construction and Building Materials,2017,153,846.127 Tran N T, Dong J K. Cement and Concrete Composites,2017,78,132.128 Su Y, Li J, Wu C, et al. Materials & Design,2017,116,340.129 Curosu I, Mechtcherine V, Millon O. Cement and Concrete Research,2016,82,23.130 Yoo D, Banthia N. Cement and Concrete Composites,2016,73,267.131 Liu Y, Song C M, Yue S L. Advanced Materials Research,2013,671,1761.132 Gong Jun, Wu Hao, Fang Qin, et al. Vibration and Shock,2017,36(1),55(in Chinese). 宫俊,吴昊,方秦,等.振动与冲击,2017,36(1),55.133 Sugano T, Tsubota H, Kasai Y, et al. Nuclear Engineering and Design,1993,140(3),387.134 Li J, Wu C, Hao H. In: International Conference on Performance-based and Life-cycle Structural Engineering. Tianjin, China,2015.135 Wu C. Australian Journal of Structural Engineering,2012,1(13),1.136 Luccioni B, Isla F, Codina R, et al. International Journal of Impact Engineering,2017,107,23.137 Soufeiani L, Raman S N, Jumaat M Z B, et al. Engineering Structures,2016,124,405.138 Yoo D, Banthia N. Construction and Building Materials,2017,149,416.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[3] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[4] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[5] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[6] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[7] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[8] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[9] 罗伟铭, 石少卿, 廖瑜, 孙建虎. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 《材料导报》期刊社, 2018, 32(8): 1328-1332.
[10] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[11] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[12] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[13] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[14] 吴晓露, 李迎春, 武海花, 孔宇飞. PMDA对废旧HIPS的修复作用[J]. 《材料导报》期刊社, 2018, 32(14): 2508-2512.
[15] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed