Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2671-2676    https://doi.org/10.11896/cldb.18070169
  无机非金属及其复合材料 |
温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究
周昱程1, 2, 刘娟红1, 2,, 纪洪广1, 2, 付士峰3, 谷峪4
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 河北省建筑科学研究院有限公司,石家庄 050021
4 河北建研科技有限公司,石家庄 050021
Study on Bursting Liability of Fiber Reinforced Shaft Lining Concrete Based on Temperature and Compound Salt
ZHOU Yucheng1,2, LIU Juanhong1,2, JI Hongguang1,2, FU Shifeng3, GU Yu4
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083
3 Hebei Academy of Building Research, Shijiazhuang 050021
4 Hebei Institute of Architectural Sciences Co., Ltd., Shijiazhuang 050021
下载:  全 文 ( PDF ) ( 3492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作从混凝土的冲击倾向性出发,通过试验比较不同等级和种类纤维混凝土的脆性系数、冲击能量指数及动态破坏时间等相关冲击倾向性指标,并提出混凝土的冲击倾向性评价标准。根据滨海金属矿地下水主要离子浓度及井下温度的现实情况,设计混凝土服役环境。结果表明:纤维能够阻滞裂纹的发展,改善混凝土的冲击倾向性;在复合盐溶液中,混凝土抗压强度不断增加,各种混凝土均朝着强冲击倾向性方向发展,且高温可以加快腐蚀速率。非蒸养型超高性能混凝土(NSC-UHPC)各方面性能皆较优异,复合盐溶液对其影响很小,腐蚀前后皆无冲击倾向性,是一种能应用于深地井壁及应力集中部位的混凝土材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周昱程
刘娟红
纪洪广
付士峰
谷峪
关键词:  冲击倾向性  纤维  非蒸养型超高性能混凝土(NSC-UHPC)  复合盐    
Abstract: This study focus on the bursting liability of concrete. The brittleness coefficient, impact energy index and dynamic failure time of various types and grades of fiber concrete were compared in this paper. Meanwhile, the evaluation criteria on bursting liability of concrete was put forward. According to the actual situation about ion concentration and temperature in the coastal metal mine, four types of environments were designed. The results show that fibers can arrest the growth of cracks, and improve the bursting liability of concrete. In the environment of composite salt corrosion, the compressive strength of concrete increase, all kinds of concrete develop towards strong bursting liability, and high temperature can shorten the process of corrosion. Non-stream cured ultra-high performance concrete (NSC-UHPC) is a kind of ductile concrete with excellent performance in all aspects. NSC-UHPC also has no bursting liability after corrosion, since the composite salt solution has little influence on it. NSC-UHPC is a kind of concrete material which can be applied to deep shaft lining.
Key words:  bursting liability    fiber    non-stream cured ultra-high performance concrete (NSC-UHPC)    composite salt
                    发布日期:  2019-07-12
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2016YFC0600803)
作者简介:  周昱程,北京科技大学土木与资源工程学院博士研究生,目前的主要研究领域是超高性能混凝土耐久性及工程应用。
刘娟红,北京科技大学土木与资源工程学院教授,博士研究生导师。长期从事现代混凝土技术教学与研究工作。承担国家自然科学基金、国家重点基础研究发展计划、国家“十二五”科技支撑项目、省部级科技计划项目和横向科研课题等50余项。获省部级科技进步一等奖1项、二等奖1项、三等奖3项。获国家发明专利6项。在公开刊物上发表文章150余篇,被SCI、EI收录50余篇。出版学术专著《绿色高性能混凝土技术与工程应用》《活性粉末混凝土》和《固体废弃物与低碳混凝土》,主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程与地铁工程混凝土裂缝控制,广东、新疆等省市重点工程等方面。
引用本文:    
周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
ZHOU Yucheng, LIU Juanhong, JI Hongguang, FU Shifeng, GU Yu. Study on Bursting Liability of Fiber Reinforced Shaft Lining Concrete Based on Temperature and Compound Salt. Materials Reports, 2019, 33(16): 2671-2676.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070169  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2671
[1] Xie H P. Advanced Engineering Sciences, 2017, 49 (2), 1(in Chinese).
谢和平. 工程科学与技术, 2017, 49 (2),1.
[2] He M C. Journal of China Coal Society, 2014, 39 (8),1409(in Chinese).
何满潮. 煤炭学报, 2014, 39 (8),1409.
[3] Dennis J B. International Journal of Mining Science and Technology, 2017, 27,749.
[4] Qi Q X, Peng Y W, Li H Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (S1), 2736(in Chinese).
齐庆新, 彭永伟, 李宏艳,等. 岩石力学与工程学报, 2011, 30 (S1),2736.
[5] Yao J M, Yan Y Y, Li S Z, et al. Journal of China Coal Society, 2011, 36(S2),353(in Chinese).
姚精明,闫永业,李生舟,等.煤炭学报, 2011, 36(S2),353.
[6] Su C D, Gao B B, Yuan R F, et al.Journal of China Coal Society, 2014, 39(S1),8(in Chinese).
苏承东, 高保彬, 袁瑞甫,等. 煤炭学报, 2014, 39(S1),8.
[7] Li H Y, Kang L J, Xu Z J, et al. Journal of China Coal Society, 2014, 39(2),384(in Chinese).
李宏艳, 康立军, 徐子杰,等.煤炭学报, 2014, 39(2),384.
[8] Song C Y, Ji H G, Sun L H. Chinese Journal of Underground Space and Engineering, 2015, 11 (S2),401(in Chinese).
宋朝阳, 纪洪广, 孙利辉. 地下空间与工程学报, 2015, 11(S2),401.
[9] Han R, Zhao S B, Qu F L.China Civil Engineering Journal, 2006, 39(11),63(in Chinese).
韩嵘, 赵顺波, 曲福来.土木工程学报,2006, 39 (11),63.
[10] Yang Y, Ren Q W. Journal of Hehai University (Natural Sciences), 2006, 34(1),92(in Chinese).
杨勇, 任青文. 河海大学学报(自然科学版), 2006, 34(1), 92.
[11] Gao D Y, Zhao L P, Feng F. Journal of Building Materials, 2014, 17(5),783(in Chinese).
高丹盈, 赵亮平, 冯虎. 建筑材料学报, 2014, 17(5),783.
[12] Jia J Q, Meng G, Zhu W Q. Journal of Building Structures, 2014, 35(9),1(in Chinese).
贾金青, 孟刚, 朱伟庆. 建筑结构学报, 2014, 35(9),1.
[13] Jia J Q, Yao D L, Yu F.Journal of Building Structures, 2013, 341(2),112(in Chinese).
贾金青, 姚大立, 余芳.建筑结构学报, 2013,341(2),112.
[14] Xu H B, Deng Z C, Chen C S, et al.China Civil Engineering Journal, 2014, 47(12),91(in Chinese).
徐海宾, 邓宗才, 陈春生,等.土木工程学报, 2014, 47(12),91.
[15] Hu C H, Gao Y E, Ding W C.Journal of Building Structures, 2013, 34(12),128(in Chinese).
胡春红, 高艳娥, 丁万聪. 建筑结构学报, 2013, 34(12),128.
[16] Yao D L, Jia J Q, Wu F, et al. Construction and Building Materials, 2014, 52,194.
[17] Rong Z D, Sun W, Zhang Y S. International Journal of Impact Enginee-ring, 2010, 37, 515.
[18] Qiao Y F, Sun W, Jiang J Y. Construction and Building Materials, 2015, 93,806.
[19] Chen F, Gao J M, Qi B, et al.Construction and Building Materials, 2017, 151,164.
[20] Gao J M, Yu Z X, Song L G, et al. Construction and Building Materials, 2013, 39,33.
[21] Liu J H, Wu R D, Zhou Y C. Journal of China Coal Society, 2018, 43(1),79(in Chinese).
刘娟红, 吴瑞东, 周昱程. 煤炭学报, 2018, 43 (1),79.
[22] Zhang X Y, Feng G R, Kang L X. Journal of China Coal Society, 2009,34(9),1165(in Chinese).
张绪言, 冯国瑞, 康力勋. 煤炭学报, 2009, 34(9),1165.
[23] Wang C. Coal Mining Technology, 2017, 22(5),9(in Chinese).
王超. 煤矿开采, 2017, 22(5),9.
[24] Liu J H, Song S M, Mei S G.Journal of Wuhan University of Technology, 2001, 23(11),14(in Chinese).
刘娟红, 宋少明, 梅世刚.武汉理工大学学报, 2001, 23(11),14.
[25] Li K, Liu J H, Bian L B.Journal of China Coal Society, 2015, 40 (S2),353(in Chinese).
李康, 刘娟红, 卞立波. 煤炭学报, 2015, 40(S2), 353.
[26] Jin Z Q, Sun W, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2006(5),630(in Chinese).
金祖权, 孙伟, 张云升,等.硅酸盐学报, 2006(5),630.
[27] Gao M, Liu J H, Wu A X, et al.Journal of Central South University (Natural Sciences), 2016, 47 (8),2776(in Chinese).
高萌, 刘娟红, 吴爱祥,等.中南大学学报(自然科学版), 2016, 47(8),2776.
[28] Zhao Z H, Xie H P. Advanced Engineering Sciences, 2008(2), 26(in Chinese).
赵忠虎, 谢和平. 四川大学学报(工程科学版), 2008(2),26.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[5] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[6] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[7] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[8] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[9] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[10] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[11] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[12] 金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
[13] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[14] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[15] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed