Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2665-2670    https://doi.org/10.11896/cldb.18070111
  无机非金属及其复合材料 |
超高韧性氯氧镁水泥基复合材料的耐水性能
王义超1, 余江滔1, 2,, 魏琳卓1, 徐世烺3
1 同济大学土木工程学院,上海 200092
2 同济大学土木工程防灾国家重点实验室,上海 200092
3 浙江大学建筑工程学院,杭州 310058
Water-resistance Property of Ultra-high Toughness Magnesium Oxychloride Cement-based Composites
WANG Yichao1, YU Jiangtao1,2, WEI Linzhuo1, XU Shilang3
1 College of Civil Engineering, Tongji University, Shanghai 200092
2 Shanghai Key Laboratory of Engineering Structure Safety, Tongji University, Shanghai 200092
3 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058
下载:  全 文 ( PDF ) ( 3081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善氯氧镁水泥基材料的脆性和耐水性能,本试验基于微观力学设计原理,采用聚乙烯纤维作为增强材料,进行了超高韧性氯氧镁水泥基复合材料的研发。通过不同粉煤灰替代率(20%、30%、40%、60%)下复合材料的拉伸、压缩和单纤维拔出试验分析粉煤灰掺量对其基本力学性能、耐水性能的影响规律,并采用X射线衍射仪和扫描电镜分析了不同粉煤灰替代率下水化产物的物相组成和微观结构。结果表明,复合材料浸水前、后均具有稳定的应变硬化和多缝开裂特性,抗拉强度介于4~7 MPa之间,拉伸应变介于5%~8%之间;聚乙烯纤维和粉煤灰的加入改善了氯氧镁水泥基材料的耐水性能,抗拉和抗压强度软化系数分别大于0.70和0.80,拉伸应变能力在复合材料浸水后均有一定的提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王义超
余江滔
魏琳卓
徐世烺
关键词:  氯氧镁水泥  粉煤灰  聚乙烯纤维  应变硬化  耐水性能    
Abstract: To improve the inherent brittleness and poor water resistance of the magnesium oxychloride cement (MOC) based composites, ultra-high toughness MOC composites (MOC-UHTC) was developed with the help of specially treated polyethylene (PE) fibers under the guidance of micromechanical design principle. The tensile, compressive and single-fiber pullout tests of materials in the four replacement ratio of fly ash (20%, 30%, 40% and 60%) were conducted. The effect of the replacement ratio of fly ash on the mechanical properties, water resistance of the materials was analyzed. And the phase composition of hydration products and the microstructure of the composites in different replacement ratio of fly ash was analyzed by XRD and SEM, respectively. The results indicate that MOC-UHTC exhibits outstanding strain hardening behavior and multi-cracking response. The tensile strain capacity of MOC-UHTC ranged from 5% to 8% with the tensile strength from 4 MPa to 7 MPa. The tensile and compressive strength retention coefficient of the composites exceeded 0.7 and 0.8 respectively, indicating that the water resis-tance was improved due to the addition of fly ash and PE fibers. Moreover, the tensile strain capacity had a certain increase after the composites immersed in water.
Key words:  magnesium oxychloride cement    fly ash    polyethylene fiber    strain hardening    water resistance
                    发布日期:  2019-07-12
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(51478362;51778461)
作者简介:  王义超,同济大学博士研究生。2016年6月毕业于北京工业大学,获工学硕士学位。2016年9月至今在同济大学土木工程学院攻读博士学位,主要从事超高性能纤维混凝土材料及其结构的研究。
余江滔,同济大学土木工程学院教授,博士研究生导师。主要从事高性能纤维混凝土的研发和应用。发表SCI检索论文30余篇,EI检索论文40余篇;获得和申报发明专利20余项;相关研究成果获得国家科技发明奖1项、上海科技进步奖2项。
引用本文:    
王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
WANG Yichao, YU Jiangtao, WEI Linzhuo, XU Shilang. Water-resistance Property of Ultra-high Toughness Magnesium Oxychloride Cement-based Composites. Materials Reports, 2019, 33(16): 2665-2670.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070111  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2665
[1] Ruan S, Qiu J, Yang E H, et al. Cement and Concrete Composites, 2018, 89, 52.
[2] Deng D, Zhang C. Cement and Concrete Research, 1999, 29 (9), 1365.
[3] Demediuk T, Cole W F, Hueber H V. Australian Journal of Chemistry, 1955, 8(2), 215.
[4] Siddique R, Naik T R. Waste Management, 2004, 24(6), 563.
[5] Li Z, Chau C K. Cement and Concrete Research, 2007, 37(6), 866.
[6] Li C D, Yu H F. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(4), 721.
[7] Li Y, Yu H, Zheng L, et al. Construction and Building Materials, 2013, 38, 1.
[8] Deng D. Cement and Concrete Research, 2003, 33(9), 1311.
[9] Tatarczak A. In: Proceedings of the International Conference on Civil, Structural and Transportation Engineering. Canada, 2015, pp. 318.
[10] Li V C, Leung C K Y. Journal of Engineering Mechanics, 1992, 118(11), 2246.
[11] Xu S L, Li H D. China Civil Engineering Journal, 2008, 41(6), 45 (in Chinese).
徐世烺, 李贺东. 土木工程学报, 2008, 41(6), 45.
[12] Yu K, Wang Y, Yu J, et al. Construction and Building Materials, 2017, 137, 410.
[13] Wang Y C, Hou M J, Yu J T. Materials Review B:Research Papers, 2018, 31(10),3535 (in Chinese).
王义超, 侯梦君, 余江滔. 材料导报:研究篇, 2018, 31(10), 3535.
[14] Yu K, Yu J, Dai J, et al. Construction and Building Materials, 2018, 158, 217.
[15] Yu K Q, Li L Z, Yu J T, et al. Engineering Structures, 2018, 170, 11.
[16] Wang Y C, Yu J T, Wang J P, et al. Journal of Wuhan University of Technology, 2017, 39(10), 26 (in Chinese).
王义超, 余江滔, 王建平, 等. 武汉理工大学学报, 2017, 39(10), 26.
[17] Wei L, Wang Y, Yu J, et al. Construction & Building Materials, 2018, 165, 750.
[18] Wang Y C, Wei L Z, Yu J T, et al. Cement and Concrete Composites, 2019, 97, 248.
[19] Xu Y N. Experimental study on tensile, compressive and bionic structural beams of UHDCC. Master’s Thesis, Tongji University, China, 2017 (in Chinese).
徐延宁. UHDCC抗拉、抗压及仿生结构梁试验研究. 硕士学位论文, 同济大学, 2017.
[20] Xu W L. The development of ultra high ductility cementitious composites and the establishment of an analytic model based on micro-mechanics. Master’s Thesis, Tongji University, China, 2016 (in Chinese).
许万里. 超高延性水泥基的制备及微观力学模型解析. 硕士学位论文, 同济大学, 2016.
[21] Ranade R, Li V C, Stults M D, et al. ACI Materials Journal, 2013, 110(4), 413.
[22] Wang S, Li V C. ACI Materials Journal, 2008, 104(3), 233.
[23] Zhang C M, Deng D H. Journal of the Chinese Ceramic Society, 1995(6), 673 (in Chinese).
张传镁, 邓德华. 硅酸盐学报, 1995(6), 673.
[24] Chau C K, Chan J, Li Z. Cement and Concrete Composites, 2009, 31(4), 250.
[25] Li V C, Wang S X. Probabilistic Engineering Mechanics, 2006, 21(3), 201.
[26] Wang S, Li V C. In: Proceedings of FRAMCOS-S, vail, Colorado, USA, 2004, PP. 1005.
[27] Dong Z Y, Li Q B. Advanced in Mechanics, 2001, 31(4), 555(in Chinese).
董振英, 李庆斌. 力学进展, 2001, 31(4), 555.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[6] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[7] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[8] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[9] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[10] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[11] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[12] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[13] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[14] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[15] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed