Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 30-34    https://doi.org/10.11896/j.issn.1005-023X.2017.012.007
  材料研究 |
甘油分散含银溶胶的制备及抑菌性能研究*
郑寅1, 陈硕平2, 王苏展1, 宋新建1, 胡盛1
1 湖北民族学院化学与环境工程学院, 恩施 445000;
2 桂林理工大学材料科学与工程学院, 桂林 541004
Synthesis and Antibacterial Property of Colloidal Silver Dispersed in Anhydrous Glycerin
ZHENG Yin1, CHEN Shuoping2, WANG Suzhan1, SONG Xinjian1, HU Sheng1
1 College of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000;
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以AgNO3为银源,无水甘油作为还原剂和分散介质,PVP-K30为稳定剂和模板剂,首次以加热搅拌法一步制备了含纳米银的无水甘油溶胶。以紫外-可见吸收光谱、X射线粉末衍射、透射电子显微镜等手段对所得溶胶和溶胶中的纳米银颗粒进行表征,考察了AgNO3加入量、反应时间等因素对纳米银溶胶和银单质形貌的影响。结果表明,当投料质量比(m(甘油)∶m(AgNO3)∶m(PVP-K30))为200∶(0.5~1.5)∶5,反应温度为110 ℃,反应时间为0.5~3 h,可以获得稳定的纳米银甘油溶胶,其中银单质的颗粒分散性好,形貌近球形,粒径为纳米级别。以大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌和蜡样芽胞杆菌作为研究对象,对所得含银溶胶的抗菌性进行研究,发现钠米银溶胶对4种目标菌均有很好的抑菌性,其中对枯草芽孢杆菌抑菌效果最好,且溶胶中银单质粒径越小,抑菌效果越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑寅
陈硕平
王苏展
宋新建
胡盛
关键词:  纳米银  甘油  溶胶  抑菌性    
Abstract: An anhydrous glycerol colloid containing nano-silver was synthesized for the first time with heating and stirring method by using silver nitrate (AgNO3) as silver source, anhydrous glycerol as reducing agent and dispersion medium, and PVP-K30 as a stabilizer and template agent. The resulted colloid and the colloidal silver were characterized by ultraviolet-visible spectroscopy, X-ray powder diffraction and transmission electron microscopy. The effects of the amount of AgNO3 and reaction time to the colloid and the morphology of metallic silver were explored. The results showed that the stable silver glycerol colloid can be synthesized under the following conditions: m(glycerol)∶m(AgNO3)∶m(PVP-K30) = 200∶(0.5-1.5)∶5, reaction temperature 110 ℃, reaction time 0.5-3 h. The silver particles in the suspension are subglobose and well dispersed, and their particle sizes are in nano-level. The antibacterial property of the silver colloid was investigated using Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Bacillus cereus. The result showed that the anhydrous glycerol colloid containing nano-silver has good antibacterial property to the four target bacteria, and displays the strongest antibacterial effect on Bacillus subtilis. On the other hand, it was proved that the silver particles with smaller sizes possess better antibacterial property.
Key words:  nano silver    anhydrous glycerol    colloid    antibacterial property
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TQ322  
基金资助: *湖北省教育厅科学技术研究计划青年人才项目(Q20151902)
通讯作者:  陈硕平:通讯作者,1985年生,博士,副研究员,研究方向为高分子材料的制备及改性 E-mail:chenshuoping_777@163.com   
作者简介:  郑寅:男,1986年生,博士,讲师,研究方向为复合材料 E-mail:zhengyin0617@163.com
引用本文:    
郑寅, 陈硕平, 王苏展, 宋新建, 胡盛. 甘油分散含银溶胶的制备及抑菌性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 30-34.
ZHENG Yin, CHEN Shuoping, WANG Suzhan, SONG Xinjian, HU Sheng. Synthesis and Antibacterial Property of Colloidal Silver Dispersed in Anhydrous Glycerin. Materials Reports, 2017, 31(12): 30-34.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.007  或          https://www.mater-rep.com/CN/Y2017/V31/I12/30
1 Maillard J Y, Hartemann P. Silver as an antimicrobial: Facts and gaps in knowledge [J]. Crit Rev Microbiol,2012,39(4):373.
2 Gao J, Li C, Zhou J, et al. Plasma sprayed alumina-nanosilver antibacterial coatings [J]. RSC Adv,2015,5(26):20357.
3 Eremenko A M, Petrik I S, Smirnova N P. Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles [J]. Nanoscale Res Lett,2016,11(1):1.
4 Li L, Zhao C J, Zhang Y D, et al. Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in strorage of rice [J]. Food Chem,2017,215:477.
5 Karel F B, Koparal A S, Kaynak E. Development of silver lon doped antibacterial clays and lnvestigation of their antibacterial activity [J]. Adv Mater Sci Eng,2015,2015:1.
6 Saravanan S, Nethala S, Pattnaik S, et al. Preparation, characte-rization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering[J]. Int J Biol Macromol,2011,49(2):188.
7 Barbinta-Patrascu M E, Badea N, Pirvu C, et al. Multifunction soft hybrid bio-platforms based on nano-silver and natural compounds [J]. Mater Sci Eng,2016,69:922.
8 Faria K, Muhammad U H, Nauman K, et al. Controlled assembly by silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation [J]. Appl Surf Sci,2016,387:317.
9 Li Z H, Zhang M, Cheng D, et al. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose for imparting antimicrobial activity [J]. Carbohydr Polym,2016,151:834.
10 Yang W L, Pollard M, Li-Besisson Y H, et al.Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure [J]. Phytochemistry,2016,130:159.
11 Kaneda I, Sakurai Y. Water/glycerol mixed solvent transportation behavior of mechanically constrained agarose gels [J]. Food Hydrocolloid,2016,61:148.
12 Ullah M H, Il K, Ha C S. Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration[J]. Mater Lett,2006,60(12):1496.
13 Khanna P K, Singh N, Kulkarni D, et al. Water based simple synthesis of re-dispersible silver nano-particles [J]. Mater Lett,2007,61(16):3366.
14 Wang C L, Guan J, Tian F. Preparation of nano-silver by photo-reduction methodusing sodium alginate[J]. Mater Rev: Res,2015,29(8):36(in Chinese).
王春来,关静,田丰. 海藻酸钠光化学还原法制备纳米银 [J].材料导报:研究篇,2015,29(8):36.
15 Lkhagvajav N, Koizhaiganova M, Yasa I, et al. Characterization and antimicrobial performance of nano silver coatings on leather materials [J]. Braz J Microbiol,2015,46(1):41.
16 Lu L, Sun R W, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication [J]. Antivir Ther,2008,13(2):253.
17 Montazer M, Keshvari A, Kahali P. Tragacanth guml nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties [J]. Carbohydr Polym,2016,54:257.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[3] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[4] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[5] 李伟, 王洪利, 刘学琰, 范智禹, 吴怡逸, 聂登攀, 陶文亮. 表面疏油Al2O3陶瓷膜的制备及表征[J]. 材料导报, 2024, 38(13): 22120002-6.
[6] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[7] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[8] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[9] 王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
[10] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[11] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[12] 吴佳洪, 王文广, 倪丁瑞, 肖伯律, 李荣德, 林楠, 武秋生, 夏津. TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能[J]. 材料导报, 2023, 37(14): 22030117-6.
[13] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[14] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[15] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed