Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 30-34    https://doi.org/10.11896/j.issn.1005-023X.2017.012.007
  材料研究 |
甘油分散含银溶胶的制备及抑菌性能研究*
郑寅1, 陈硕平2, 王苏展1, 宋新建1, 胡盛1
1 湖北民族学院化学与环境工程学院, 恩施 445000;
2 桂林理工大学材料科学与工程学院, 桂林 541004
Synthesis and Antibacterial Property of Colloidal Silver Dispersed in Anhydrous Glycerin
ZHENG Yin1, CHEN Shuoping2, WANG Suzhan1, SONG Xinjian1, HU Sheng1
1 College of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000;
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以AgNO3为银源,无水甘油作为还原剂和分散介质,PVP-K30为稳定剂和模板剂,首次以加热搅拌法一步制备了含纳米银的无水甘油溶胶。以紫外-可见吸收光谱、X射线粉末衍射、透射电子显微镜等手段对所得溶胶和溶胶中的纳米银颗粒进行表征,考察了AgNO3加入量、反应时间等因素对纳米银溶胶和银单质形貌的影响。结果表明,当投料质量比(m(甘油)∶m(AgNO3)∶m(PVP-K30))为200∶(0.5~1.5)∶5,反应温度为110 ℃,反应时间为0.5~3 h,可以获得稳定的纳米银甘油溶胶,其中银单质的颗粒分散性好,形貌近球形,粒径为纳米级别。以大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌和蜡样芽胞杆菌作为研究对象,对所得含银溶胶的抗菌性进行研究,发现钠米银溶胶对4种目标菌均有很好的抑菌性,其中对枯草芽孢杆菌抑菌效果最好,且溶胶中银单质粒径越小,抑菌效果越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑寅
陈硕平
王苏展
宋新建
胡盛
关键词:  纳米银  甘油  溶胶  抑菌性    
Abstract: An anhydrous glycerol colloid containing nano-silver was synthesized for the first time with heating and stirring method by using silver nitrate (AgNO3) as silver source, anhydrous glycerol as reducing agent and dispersion medium, and PVP-K30 as a stabilizer and template agent. The resulted colloid and the colloidal silver were characterized by ultraviolet-visible spectroscopy, X-ray powder diffraction and transmission electron microscopy. The effects of the amount of AgNO3 and reaction time to the colloid and the morphology of metallic silver were explored. The results showed that the stable silver glycerol colloid can be synthesized under the following conditions: m(glycerol)∶m(AgNO3)∶m(PVP-K30) = 200∶(0.5-1.5)∶5, reaction temperature 110 ℃, reaction time 0.5-3 h. The silver particles in the suspension are subglobose and well dispersed, and their particle sizes are in nano-level. The antibacterial property of the silver colloid was investigated using Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Bacillus cereus. The result showed that the anhydrous glycerol colloid containing nano-silver has good antibacterial property to the four target bacteria, and displays the strongest antibacterial effect on Bacillus subtilis. On the other hand, it was proved that the silver particles with smaller sizes possess better antibacterial property.
Key words:  nano silver    anhydrous glycerol    colloid    antibacterial property
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TQ322  
基金资助: *湖北省教育厅科学技术研究计划青年人才项目(Q20151902)
通讯作者:  陈硕平:通讯作者,1985年生,博士,副研究员,研究方向为高分子材料的制备及改性 E-mail:chenshuoping_777@163.com   
作者简介:  郑寅:男,1986年生,博士,讲师,研究方向为复合材料 E-mail:zhengyin0617@163.com
引用本文:    
郑寅, 陈硕平, 王苏展, 宋新建, 胡盛. 甘油分散含银溶胶的制备及抑菌性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 30-34.
ZHENG Yin, CHEN Shuoping, WANG Suzhan, SONG Xinjian, HU Sheng. Synthesis and Antibacterial Property of Colloidal Silver Dispersed in Anhydrous Glycerin. Materials Reports, 2017, 31(12): 30-34.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.007  或          http://www.mater-rep.com/CN/Y2017/V31/I12/30
1 Maillard J Y, Hartemann P. Silver as an antimicrobial: Facts and gaps in knowledge [J]. Crit Rev Microbiol,2012,39(4):373.
2 Gao J, Li C, Zhou J, et al. Plasma sprayed alumina-nanosilver antibacterial coatings [J]. RSC Adv,2015,5(26):20357.
3 Eremenko A M, Petrik I S, Smirnova N P. Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles [J]. Nanoscale Res Lett,2016,11(1):1.
4 Li L, Zhao C J, Zhang Y D, et al. Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in strorage of rice [J]. Food Chem,2017,215:477.
5 Karel F B, Koparal A S, Kaynak E. Development of silver lon doped antibacterial clays and lnvestigation of their antibacterial activity [J]. Adv Mater Sci Eng,2015,2015:1.
6 Saravanan S, Nethala S, Pattnaik S, et al. Preparation, characte-rization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering[J]. Int J Biol Macromol,2011,49(2):188.
7 Barbinta-Patrascu M E, Badea N, Pirvu C, et al. Multifunction soft hybrid bio-platforms based on nano-silver and natural compounds [J]. Mater Sci Eng,2016,69:922.
8 Faria K, Muhammad U H, Nauman K, et al. Controlled assembly by silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation [J]. Appl Surf Sci,2016,387:317.
9 Li Z H, Zhang M, Cheng D, et al. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose for imparting antimicrobial activity [J]. Carbohydr Polym,2016,151:834.
10 Yang W L, Pollard M, Li-Besisson Y H, et al.Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure [J]. Phytochemistry,2016,130:159.
11 Kaneda I, Sakurai Y. Water/glycerol mixed solvent transportation behavior of mechanically constrained agarose gels [J]. Food Hydrocolloid,2016,61:148.
12 Ullah M H, Il K, Ha C S. Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration[J]. Mater Lett,2006,60(12):1496.
13 Khanna P K, Singh N, Kulkarni D, et al. Water based simple synthesis of re-dispersible silver nano-particles [J]. Mater Lett,2007,61(16):3366.
14 Wang C L, Guan J, Tian F. Preparation of nano-silver by photo-reduction methodusing sodium alginate[J]. Mater Rev: Res,2015,29(8):36(in Chinese).
王春来,关静,田丰. 海藻酸钠光化学还原法制备纳米银 [J].材料导报:研究篇,2015,29(8):36.
15 Lkhagvajav N, Koizhaiganova M, Yasa I, et al. Characterization and antimicrobial performance of nano silver coatings on leather materials [J]. Braz J Microbiol,2015,46(1):41.
16 Lu L, Sun R W, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication [J]. Antivir Ther,2008,13(2):253.
17 Montazer M, Keshvari A, Kahali P. Tragacanth guml nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties [J]. Carbohydr Polym,2016,54:257.
[1] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[2] 韦学玉, 杨晓凡, 白炳莲, 徐晓平, 李济源, 刘志刚. 对氟离子呈现状态和比色响应的有机凝胶的研究进展[J]. 材料导报, 2019, 33(9): 1583-1594.
[3] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[4] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[5] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[6] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[7] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[8] 厉佩贤, 袁鸽成, 陆正华, 李倩, 乐迎锋, 吴其光. 热处理对Bi2O3-B2O3-SiO2凝胶玻璃粉体结构与性能的影响[J]. 材料导报, 2018, 32(22): 4006-4010.
[9] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[10] 张晓春,于良民,姜晓辉. 含辣素衍生结构单体及其聚合物的合成、抑菌与抑藻性能[J]. 《材料导报》期刊社, 2018, 32(2): 193-197.
[11] 常闯, 万隆, 宋冬冬, 李建伟, 刘莹莹. 溶胶喷雾造粒法制备球形刚玉磨料[J]. 《材料导报》期刊社, 2018, 32(14): 2335-2339.
[12] 张文博, 王华, 许积文, 刘国保, 谢航, 杨玲. 铋掺杂对SrTiO3薄膜微观结构及阻变行为的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1932-1937.
[13] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[14] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[15] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed