Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20155-20160    https://doi.org/10.11896/cldb.20100239
  高分子与聚合物基复合材料 |
多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用
张令坤1, 孟俊行1, 侯成义1, 张青红2, 李耀刚2, 王宏志1
1 东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
2 东华大学材料科学与工程学院,先进玻璃制造教育部工程中心,上海 201620
Multi-stimulus Response MWCNTs-CS/AFP Double-layer Actuator: Conversion and Application of Energy
ZHANG Lingkun1, MENG Junxing1, HOU Chengyi1, ZHANG Qinghong2, LI Yaogang2, WANG Hongzhi1
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 6543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 软体致动器能够响应外部刺激而产生形变,在生物医药、机器人等多个领域已经得到应用。然而,现有的多数软致动器仅限于一种操作方法,无法在不同的环境条件下充分发挥作用,因此有必要开发一种可以响应多种刺激的软体致动器。因为碳基材料具有优异的光学性能、机械强度、电导率、热导率以及良好的柔韧性和稳定性,在致动器领域具有广阔的应用前景。本研究通过简单的工艺过程,开发了一种形状可设计的多响应致动器,该致动器能够在三种不同的刺激(电、湿度和红外光)下发生形变,从而将其他形式的能量转化为机械能,在柔性开关、人造肌肉、软机器人和环境监测等领域具有较大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张令坤
孟俊行
侯成义
张青红
李耀刚
王宏志
关键词:  多壁碳纳米管  壳聚糖  多刺激响应  致动器    
Abstract: Soft actuators, which can deform under external stimuli, have been used in many fields such as biomedical, robotics and so on. However, most of the existing soft actuators are limited to one operation method and cannot play a full role under different environmental conditions. Therefore, it is necessary to develop a software actuator that can respond to multiple stimuli. Because of their excellent optical properties, mechanical strength, electrical conductivity, thermal conductivity, and good flexibility and stability, carbon-based materials have a broad application prospect in the field of actuators. A shape-designable multi-response actuator is developed through a simple filtration process. The actuator can change the structure to convert other forms of energy to mechanical energy under three stimuli (electricity, humidity and infrared light). It has great application potential in the fields of flexible switches, artificial muscles, soft robots and environmental monitoring.
Key words:  multi-walled carbon nanotubes (MWCNTs)    chitosan (CS)    multi-stimulus response    soft actuators
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TB381  
基金资助: 中央高校基础研究基金(2232019G-02; 2232019A3-02);东华大学杰出青年教授计划(LZB2019002);上海新星计划(20QA1400300)
通讯作者:  yaogang_li@dhu.edu.cn; wanghz@dhu.edu.cn   
作者简介:  张令坤,2018年9月至今,东华大学材料科学与工程学院学术型硕士研究生,研究方向为致动材料与软体机器人。
李耀刚,东华大学材料科学与工程学院教授、博士研究生导师。2003年毕业于上海硅酸盐研究所,获得博士学位。主要从事新能源材料、生物医用材料和智能材料的研究。在国际期刊发表论文100余篇,获得授权专利50余项。
王宏志,东华大学材料科学与工程学院教授、博士研究生导师。1998年毕业于上海硅酸盐研究所,获得博士学位。主要从事柔性电子材料与器件、新能源材料、智能显色与变色器件、可穿戴器件与系统和先进纳米纤维及复合材料的研究。在国际期刊发表SCI论文100余篇,获授权发明专利57项。
引用本文:    
张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
ZHANG Lingkun, MENG Junxing, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-stimulus Response MWCNTs-CS/AFP Double-layer Actuator: Conversion and Application of Energy. Materials Reports, 2021, 35(20): 20155-20160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100239  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20155
1 Hines L, Petersen K, Lum G Z, et al. Advanced Materials,2017,29(13),1603483.
2 Kim J, Kim J W, Kim H C, et al. International Journal of Precision Engineering and Manufacturing,2019.20(12),2221.
3 Jeon S J, Hauser A W, Hayward R C. Accounts of Chemical Research,2017,50(2),161.
4 Liu T, Zhou T, Yao Y, et al. Composites Part A: Applied Science and Manufacturing,2017,100,20.
5 Youn J H, Jeong S M, Hwang G, et al. Applied Sciences-Basel,2020,10(2),32.
6 Wen Z B, Yang K K, Raquez J M. Molecules,2020,25(5),13.
7 Giorcelli M, Bartoli M. Actuators,2019,8(2),13.
8 Mu J, Hou C, Wang H, et al. Carbon,2015,95,150.
9 Han B, Zhang Y L, Chen Q D, et al. Advanced Functional Materials,2018,28(40),18022351.
10 Ali I, Yang W M, Li X D, et al. European Polymer Journal,2020,126,9.
11 Hu Y, Liu J, Chang L, et al. Advanced Functional Materials,2017,27(44),1704388.
12 Li L, Meng J, Hou C, et al. ACS Applied Materials & Interfaces,2018,10(17),15122.
13 Yang M J, Yuan Z K, Liu J, et al. Advanced Optical Materials,2019,7(16),30.
14 Ghosh R, Telpande S, Gowda P, et al. ACS Applied Materials & Interfaces,2020,12(26),29959.
15 Wang S F, Shen L, Zhang W D, et al. Biomacromolecules,2005,6(6),3067.
16 Lu L, Chen W. Advanced Materials,2010,22(33),3745.
17 Carson L, Kelly-Brown C, Stewart M, et al. Materials Letters,2009,63(6-7),617.
18 Amjadi M, Sitti M. Advanced Science,2018,5(7),8.
19 Rhim J W, Hong S I, Park H M, et al. Journal of Agricultural and Food Chemistry,2006,54(16),5814.
[1] 刘珊, 廖磊, 蒋翠婷, 李炫妮, 曹磊, 赵春朋. 铝污泥负载水合氧化铁-壳聚糖吸附水中Ni(Ⅱ)的研究[J]. 材料导报, 2021, 35(Z1): 530-535.
[2] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[3] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[4] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[5] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[6] 刘晓琦, 张廷安, 刘燕, 赵昕昕. 壳聚糖膜在渗透汽化中的研究进展[J]. 材料导报, 2021, 35(1): 1224-1231.
[7] 胡汉娇, 梁兴唐, 汪双双, 张霞, 尹艳镇, 尹雪斌. 羧甲基壳聚糖-羧基葡聚糖凝聚微滴的制备及其酵母细胞毒性[J]. 材料导报, 2020, 34(Z2): 496-500.
[8] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[9] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[10] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[11] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[12] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[13] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[14] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[15] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed