Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20110094-6    https://doi.org/10.11896/cldb.20110094
  高分子与聚合物基复合材料 |
Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响
李威霖1, 王佳2, 焦剑1
1 西北工业大学化学与化工学院,西安 710129
2 西安超码科技有限公司,西安 710025
Effect of Fe3O4-MWCNTs Hybrid Buckypapers on the Microwave Absorbing Properties of Fiber Reinforced Composites
LI Weilin1, WANG Jia2, JIAO Jian1
1 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
2 Xi'an Chaoma Technology Co.,Ltd., Xi'an 710025, China
下载:  全 文 ( PDF ) ( 3297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用原位合成法及真空抽滤法制备了四氧化三铁-多壁碳纳米管(Fe3O4-MWCNTs)杂化纳米粒子及杂化纳米纸,并将这类杂化纳米纸铺贴于玻璃纤维/环氧树脂(GF/EP)基板上制备了吸波复合材料,此类吸波材料极大地改善了吸波涂层在应用中用量受限、成型工艺差、吸波性能难以调控的问题。研究结果表明:在Fe3O4含量为30%(质量分数,下同)时,Fe3O4/MWCNTs杂化纳米粒子及其纳米纸吸波性能最佳,杂化纳米粒子的反射损耗RL<-10 dB的频宽为2.88 GHz,最小RL在14.7 GHz处可达-26.36 dB;杂化纳米纸的RL<-10 dB的频宽为6.0 GHz,最小RL在16.3 GHz处可达-26.4 GHz。吸波复合材料经EP表面处理后的吸波性能得到提高,最小RL在14.2 GHz处达到-25.6 dB;多层铺贴杂化纳米纸增加了吸波层厚度,提高了吸波复合材料的吸波性能,当铺贴两层纳米纸时材料的吸波性能最佳,RL<-6 dB的频宽为4.5 GHz,最小RL在12.4 GHz处可达-31.2 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李威霖
王佳
焦剑
关键词:  多壁碳纳米管(MWCNTs)  四氧化三铁(Fe3O4)  杂化纳米纸  吸波复合材料  吸波性能    
Abstract: Fe3O4-MWCNTs hybrid nanoparticles are prepared by in-situ synthesis method and hybrid buckypapers are prepared furtherly by vacuum filtration method. This kind of absorbing materials greatly solves the problems of limited dosage, poor molding process, and difficulty in controlling absorbing performance in the application of absorbing coatings.The Fe3O4/MWCNTs hybrid nanoparticles exhibit an effective absorption bandwidth of 2.88 GHz(below -10 dB) and minimum RL value of -26.36 dB at a frequency of 14.7 GHz at 30% loading of Fe3O4. Under the same ratio, the bandwidth of hybrid buckypapers is 6.0 GHz(below -10 dB) and minimum RL value is -26.4 GHz at a frequency of 16.3 GHz. Additionally, the absorbing composites shows RL value of -25.6 dB at a frequency of 14.2 GHz, which indicates the absorbing performance of absorbing composites are improved after EP coating surface of composites. Moreover, the multi-layer hybrid buckypapers being pasted on the GF/EP composites increase the thickness of the absorbing layer, which improves the absorbing performance of the absorbing composites. The absorbing composites with two layers of hybrid buckypapers dominate their good absorbing performances including an effective absorption bandwidth of 4.5 GHz(below -6 dB) and the minimum RL value of -31.2 dB at a frequency of 12.4 GHz.
Key words:  multi-walled carbon nanotubes(MWCNTs)    ferric oxide(Fe3O4)    hybrid buckypaper    absorbing composites    absorbing performance
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TB332  
基金资助: 陕西省自然科学基础研究计划(2020JM-087)
通讯作者:  jjiao@nwpu.edu.cn   
作者简介:  李威霖,2019年6月毕业于西北工业大学,于2019年9月至今在西北工业大学化学与化工学院攻读材料学硕士学位,主要从事吸波复合材料领域的研究。
焦剑,西北工业大学化学与化工学院,教授,博士研究生导师,陕西省复合材料学会会员,中国环氧树脂学会会员。2007年—2008年受国家留学基金委资助赴美国密歇根州立大学化学系从事访问研究。目前主要研究方向有中空无机纳米粒子的合成及应用、介孔材料的设计在透波材料和二氧化碳吸附材料上的应用以及石墨烯、碳纳米管等在电磁屏蔽材料上的应用等。
引用本文:    
李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
LI Weilin, WANG Jia, JIAO Jian. Effect of Fe3O4-MWCNTs Hybrid Buckypapers on the Microwave Absorbing Properties of Fiber Reinforced Composites. Materials Reports, 2022, 36(5): 20110094-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110094  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20110094
1 Zhang S, Wang J J, Zhao F, et al. Journal of Materials Engineering, 2019, 47(12), 118(in Chinese).
张飒,王建江,赵芳,等.材料工程,2019, 47(12), 118.
2 Tao R, Liu C H, Ban G D, et al. Surface Technology, 2017, 46(3), 165(in Chinese).
陶睿,刘朝辉,班国东,等. 表面技术, 2017, 46(3), 165.
3 DuC L, Yin X F, Qin J Y, et al. Web of Conferences,2020,316,04004.
4 Jiang S, Qian K, Yu K J, et al. Composites Communications, 2020, 20, 100363.
5 Li Q, Chen Z P, Yang X F, et al. Materials Reports A: Review Papers, 2015, 29(10), 28(in Chinese).
李庆,陈志萍,杨晓峰,等. 材料导报:综述篇, 2015, 29(10), 28.
6 Marra F, Scarinci E, Bellis G D, et al.In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). Rome, 2016.
7 Shi T, Li Z X, Guo J, et al. Construction and Building Materials,2019,202, 290.
8 Anastasia O K, Olga A U, Dotsenko A S, et al.In: 17th International Conference on Micro/Nanotechnologies and Electron Devices EDM. Russia, 2016.
9 An R, Wei H Y, He M, et al. Materials Reports A: Review Papers, 2017, 31(11), 46(in Chinese).
安锐,韦红余,何敏,等.材料导报:综述篇, 2017, 31(11), 46.
10 Sui J H, Zhang C, Li J, Yu Z L, et al. Materials Letters,2012,75,158.
11 Zhu H, Zhang L, Zhang L Z,et al. Materials Letters,2010,64(3),227.
12 Zhao P F, Geng H R, Fan H J, et al. Materials Reports B: Research Papers, 2020, 34(7), 14204(in Chinese).
赵鹏飞,耿浩然,范浩军,等.材料导报:研究篇,2020,34(7),14204.
13 Qin Y, Zhang J Y, Sun K, et al. China Coatings, 2020, 35(3), 26(in Chinese).
秦颖,张建英,孙坤,等. 中国涂料, 2020, 35(3), 26.
14 Chapartegui M, Barcena J, Irastorza X, et al. Composites Science and Technology, 2012, 72(4), 489.
15 Abdelhafid A, Alexandru V, Mohamed A, et al. Chemical communications, 2015, 51(45), 9301.
16 Bourourou M, Elouarzaki K, Holzinger M, et al. Chemical Science, 2014, 5(7), 2885.
17 Lu S W, Li Q, Xiong X H, et al. Journal of Inorganic Materials, 2015, 30(1), 23(in Chinese).
卢少微,李倩,雄需海,等. 无机材料学报, 2015, 30(1),23.
18 Zhao C, Zhang A, Zheng Y, et al. Materials Research Bulletin,2012,47(2), 217.
19 Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and absorbing materials. Chemical Industry Press,China,2013(in Chinese).
刘顺华,刘军民,董星龙,段玉平.电磁波屏蔽及吸波材料.化学工业出版社.2013.
20 Lu S W, Xu W K, Hai X X, et al. Journal of Alloys and Compounds,2014,606,171.
21 Zheng X L. Research on preparation and absorbing properties of structural absorbing composite materials. Ph.D. Thesis, Nanchang University, China,2014(in Chinese).
郑夏莲. 结构型吸波复合材料制备与吸波性能研究.博士学位论文,南昌大学,2014.
[1] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[2] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[3] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[4] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[5] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[6] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[7] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[8] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[9] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[10] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[11] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[12] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[13] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[14] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[15] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed