Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21010127-9    https://doi.org/10.11896/cldb.21010127
  高分子与聚合物基复合材料 |
喷墨打印制备柔性高精度导电图案研究进展
刘泰江1,2, 陈俊龙1,2, 赵杰1,2, 陈楠泓1,2, 李依麟1,2, 梁宏富1,2, 杨跃鑫1,2, 姚日晖1,2, 宁洪龙1,2,*, 彭俊彪1,2
1 华南理工大学发光材料与器件国家重点实验室,广州 510641
2 华南理工大学高分子光电材料与器件研究所,广州 510641
Research Progress on the Preparation of Flexible High-precision Conductive Patterns by Inkjet Printing
LIU Taijiang1,2, CHEN Junlong1,2, ZHAO Jie1,2, CHEN Nanhong1,2, LI Yilin1,2, LIANG Hongfu1,2, YANG Yuexin1,2, YAO Rihui1,2, NING Honglong1,2,*, PENG Junbiao1,2
1 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China
2 Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 3412KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性高精度导电图案的制备对下一代超低功耗和柔性电子器件的实现是非常关键和重要的一步。从加工制造角度来看,按需打印的喷墨印刷技术作为一种净成型沉积技术,以其特有的优势为实现低成本薄膜器件的制备带来了巨大的机遇。尽管喷墨打印可穿戴电子器件的商业化仍存在诸多挑战,但近年来,大量对墨水材料、喷墨打印工艺和器件结构的研究不断推进着印刷柔性高精度导电图案的进步。本文着重从柔性导电图案用墨水体系的开发、导电图案柔性提升技术和导电图案精度提升技术进展三个方面出发,探讨了近年来打印柔性高精度导电图案取得的进步,以及未来的发展与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泰江
陈俊龙
赵杰
陈楠泓
李依麟
梁宏富
杨跃鑫
姚日晖
宁洪龙
彭俊彪
关键词:  柔性  导电图案  高精度  喷墨打印    
Abstract: The preparation of flexible high-precision conductive patterns is a very critical and important step for the realization of next-generation ultra-low power consumption and flexible electronic devices. From the perspective of processing and manufacturing, the inkjet printing technology of on-demand deposition, as a net shape deposition technology, brings huge opportunities for the preparation of low-cost thin-film devices with its unique advantages. Although there are still challenges in the commercialization of printed wearable electronic devices, in recent years, considerable research efforts on ink materials, inkjet printing processes and device structures have continuously promoted the progress of printing flexible high-precision conductive patterns. This article focuses on the development of flexible conductive pattern ink system, conductive pattern flexibility improvement technology and conductive pattern accuracy improvement technology, discusses the progress made in printing flexible high-precision conductive patterns in recent years, as well as future development and challenges.
Key words:  flexibility    conductive pattern    high resolution    inkjet printing
发布日期:  2022-10-26
ZTFLH:  TN41  
基金资助: 广东省重点领域研发计划(2020B010183002);国家自然科学基金(62074059;22090024);广东省基础与应用基础研究重大项目(2019B030302007);中央高校基本科研业务费专项资金(2020ZYGXZR060);季华实验室自主立项项目“AM-Micro/Mini LED大尺寸显示器关键技术研究”(X190221TF191);华南理工大学百步梯攀登计划研究项目(j2tw2021020001);2021年广东省科技创新战略专项资金(“攀登计划”专项资金)(pdjh2021b0036)
通讯作者:  *ninghl@scut.edu.cn   
作者简介:  刘泰江,2020年7月于西南大学获得工学学士学位,现为华南理工大学光电材料与器件研究所硕士研究生,主要从事印刷柔性光电器件方面的研究。
宁洪龙,华南理工大学教授、博士研究生导师;2004年于清华大学获博士学位,目前主要从事新型信息显示材料与器件系统集成领域的研究。已发表论文200余篇,包括Light-Science & Applications、Advanced Functional Materials、ACS Applied Materials & Interfaces、Journal of Materials Chemistry CApplied Physics Letters等。
引用本文:    
刘泰江, 陈俊龙, 赵杰, 陈楠泓, 李依麟, 梁宏富, 杨跃鑫, 姚日晖, 宁洪龙, 彭俊彪. 喷墨打印制备柔性高精度导电图案研究进展[J]. 材料导报, 2022, 36(20): 21010127-9.
LIU Taijiang, CHEN Junlong, ZHAO Jie, CHEN Nanhong, LI Yilin, LIANG Hongfu, YANG Yuexin, YAO Rihui, NING Honglong, PENG Junbiao. Research Progress on the Preparation of Flexible High-precision Conductive Patterns by Inkjet Printing. Materials Reports, 2022, 36(20): 21010127-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010127  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21010127
1 Scheideler W J, Kumar R, Zeumault A R, et al. Advanced Functional Materials, 2017, 27(14), 1606062.
2 Jang J, Kitsomboonloha R, Swisher S L, et al. Advanced Materials, 2012, 25(7), 1042.
3 Ante F, Kaelblein D, Zaki T, et al. Small, 2012, 8(1), 73.
4 Yang W, List-Kratochvil E J W, Wang C. Journal of Materials Chemistry C, 2019, 7(48), 15098.
5 Sekine S, Ido Y, Miyake T, et al. Journal of the American Chemical Society, 2010, 132(38), 13174.
6 Chen J H, Ishigami M, Jang C, et al. Advanced Materials, 2008, 19(21), 3623.
7 Kjellander B K C, Smaal W T T, Anthony J E, et al. Advanced Mate-rials, 2010, 22(41), 4612.
8 Deegan R D, Bakajin O, Dupont T F, et al. Nature,1997,389(6653), 827.
9 Choi B, Kwon O. IEEE Transactions on Consumer Electronics, 2004, 50(1), 33
10 Ning H, Zhou Y, Fang Z, et al. Nanoscale Research Letters, 2017, 12(1), 546.
11 Xiao P, Zhou Y, Gan L, et al. Micromachines, 2020, 11(7), 677.
12 Buffat P A, Borel J P. Physical Review A, 1976, 13(6), 2287.
13 Kim Y P, Jung S W, Kang S, et al. Journal of the American Ceramic Society, 2005, 88(8), 2106.
14 Mo L, Liu D, Li W, et al. Applied Surface Science,2011,257(13),5746.
15 Zhou X, Li W, Wu M, et al. Applied Surface Science, 2014, 292(15), 537.
16 Huang Q, Shen W, Song W. Applied Surface Science, 2012, 258(19), 7384.
17 Uttiya S, Bernini C, Vignolo M, et al. Thin Solid Films, 2017, 642(30), 370.
18 Chang Y, Wang D Y, Tai Y L, et al. Journal of Materials Chemistry, 2012, 22(48), 25296.
19 Bhat K S, Ahmad R, Wang Y, et al. Journal of Materials Chemistry C, 2016, 4(36), 8522.
20 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554.
21 Lamoth M, Plodinec M, Scharfenberg L, et al. ACS Applied Nano Materials, 2019, 2(5), 2909.
22 Tao R, Fang Z, Zhang J, et al. ACS Applied Materials & Interfaces, 2018, 10(27), 22883.
23 Yang W, Wang C, Arrighi V. Journal of Materials Science Materials in Electronics, 2018, 29(4), 1.
24 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554.
25 Zhou W, Bai S, Ma Y, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24887.
26 Kell A J, Paquet C, Mozenson O, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17226.
27 Zope K R, Cormier D, Williams S. ACS Applied Materials & Interfaces, 2018, 10(4), 3830.
28 Tao R, Fang Z, Ning H, et al. Advanced Materials Technologies, 2019, 4(2), 1800243.
29 Walker S B, Lewis J A. Journal of the American Chemical Society, 2012, 134(3), 1419.
30 Vaseem M, Mckerricher G, Shamim A. ACS Applied Materials & Interfaces, 2016, 8(1), 177.
31 Chen S P, Kao Z K, Lin J L, et al. ACS Applied Materials & Interfaces, 2012, 4(12), 7064.
32 Lin Z, Han D, Li S. Journal of Thermal Analysis and Calorimetry, 2012, 107(2), 471.
33 Woo K, Bae C, Jeong Y, et al. Journal of Materials Chemistry, 2010, 20(19), 3877.
34 Wu X, Shao S, Chen Z, et al. Nanotechnology, 2016, 28(3), 035203.
35 Kwon Y, Lee Y, Kim S, et al. Applied Surface Science, 2017, 396, 1239.
36 Kaltenbrunner M, Adam G, Glowacki E D, et al. Nature Materials, 2015, 14(10), 1032.
37 Hu L, Hecht D S, Gruener G. Applied Physics Letters, 2009, 94(8), 1273.
38 Hu L, Li J, Liu J, et al. Nanotechnology, 2010, 21(15), 155202.
39 Cao Q, Hur S, Zhu Z, et al. Advanced Materials, 2006, 18(3), 304.
40 Chen P, Chen H, Qiu J, et al. Nano Research, 2010, 3(8), 594.
41 Shin K Y, Hong J Y, Jang J. Advanced Materials, 2011, 23(18), 2113.
42 Gorkina A L, Tsapenko A P, Gilshteyn E P, et al. Carbon,2016,100, 501.
43 Gao Y, Shi W, Wang W, et al. Industrial & Engineering Chemistry Research, 2014, 53(43), 16777.
44 Secor E B, Prabhumirashi P L, Puntambekar K, et al. Journal of Physical Chemistry Letters, 2013, 4(8), 1347.
45 Hu H, Larson R G. Journal of Physical Chemistry B, 2006, 110(14), 7090.
46 Pu X, Li L, Liu M, et al. Advanced Materials, 2016, 28(1), 98.
47 Liang J, Tong K, Pei Q. Advanced Materials, 2016, 28(28), 5986.
48 Li Z, Guo D, Xiao P, et al. Micromachines, 2020, 11(3), 236.
49 Stewart I E, Kim M J, Wile B J. ACS Applied Materials & Interfaces, 2017, 9(2), 1870.
50 Nair N M, Pakkathillam J K, Kumar K, et al. ACS Applied Electronic Materials, 2020, 2(4), 1000.
51 Liu L, Lu Q, Yang S, et al. Advanced Materials Technologies, 2017, 3(1), 1700206.
52 Singh N, Khanna P K. Materials Chemistry & Physics,2007,104(2-3),367.
53 Chen C, Li J, Luo G, et al. Applied Surface Science, 2012, 258(24), 10180.
54 Faddoul R, Nadège R B, Blayo A. Materials Science & Engineering B, 2012, 177(13), 1053.
55 Meng Y, Ma T, Pavinatto F J, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9190.
56 Rane S B, Seth T, Phatak G J, et al. Journal of Materials Science Mate-rials in Electronics, 2004, 15(2), 103.
57 Luo S, Xu W, Wang N, et al. Journal of Coatings Technology & Research, 2013, 10(6), 769.
58 Lee I, Kim S, Yun J, et al. Nanotechnology, 2012, 23(48), 485704.
59 Sekine T, Ikeda H, Kosakai A, et al. Applied Surface Science, 2014, 294, 20.
60 Sekine T, Fukuda K, Kumaki D, et al. Nanotechnology, 2015, 26, 321001.
61 Jung J K, Choi S H, Kim I, et al. Philosophical Magazine, 2008, 88(3), 339.
62 Kim S, Won S, Sim G D, et al. Nanotechnology, 2013, 24(8), 085701.
63 Sim G D, Won S, Lee S B. Applied Physics Letters,2012,101(19),829.
64 Jung J K, Choi S H, Kim I, et al. Philosophical Magazine, 2008, 88(3), 339.
65 Kim B J, Haas T, Friederich A, et al. Nanotechnology, 2014, 25(12), 125706.
66 Cheng T, Wu Y W, Chen Y L, et al. Small, 2019, 15(34), 1901830.
67 Chen J, Gan L, Pan Z, et al. Nanomaterials, 2019, 9(11), 1515.
68 Ning H, Tao R, Fang Z, et al. Journal of Colloid & Interface Science, 2017, 487, 68.
69 Léopoldès J, Dupuis A, Bucknall D G, et al. Langmuir, 2012, 19(23), 9818.
70 Sirringhaus H, Kawase T, Friend R, et al. Science,2000,290(5499),2123.
71 Li Y, Lan L, Xiao P, et al. ACS Applied Materials & Interfaces, 2016, 8(30), 19643.
72 He M, Zhang Q, Zeng X, et al. Advanced Materials, 2013, 25(16), 2291.
73 Kim C, Nogi M, Suganuma K, et al. ACS Applied Materials & Interfaces, 2012, 4(4), 2168.
74 Hendriks C E, Smith P J, Perelaer J, et al. Advanced Functional Mate-rials, 2010, 18(7), 1031.
75 Berg A V D, Laat A D, Smith P J, et al. Journal of Materials Chemistry, 2007, 17(7), 677.
76 Doggart J, Wu Y, Liu P, et al. ACS Applied Materials & Interfaces, 2010, 2(8),2189.
77 Cao X, Wu F, Lau C, et al. ACS Nano, 2017, 11(2), 2008.
78 Sele C W, Vonwerne T, Friend R H, et al. Advanced Materials, 2005, 17(8), 997.
79 Hu H, Larson R G. Journal of Physical Chemistry B, 2006, 110(14), 7090.
80 Kuang M, Wang L, Song Y. Advanced Materials, 2015, 26(40), 6950.
81 Jang J, Kang H, Chakravarthula H C N, et al. Advanced Electronic Materials, 2015, 1(7), 1500086.
82 Tang W, Feng L, Zhao J, et al. Journal of Materials Chemistry C, 2014, 2(11), 1995.
83 Son Y H, Kang M K, Lee C S. Materials Chemistry and Physics, 2019, 223, 779.
84 Li Y, Lan L, Sun S, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8194.
[1] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[2] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[3] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[4] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[5] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[6] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[7] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[8] 陈剑英, 张恒宇, 肖红, 王府梅. 频率选择表面的可重构及纺织应用[J]. 材料导报, 2022, 36(15): 20110275-7.
[9] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[10] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[11] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[12] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[13] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[14] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[15] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed