Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20110275-7    https://doi.org/10.11896/cldb.20110275
  金属与金属基复合材料 |
频率选择表面的可重构及纺织应用
陈剑英1,2, 张恒宇1,2, 肖红2,*, 王府梅1
1 东华大学纺织学院,上海 201620
2 军事科学院系统工程研究院军需工程技术研究所,北京 100010
Reconfigurable Frequency Selective Surface and the Textile Applications
CHEN Jianying1,2, ZHANG Hengyu1,2, XIAO Hong2,*, WANG Fumei1
1 College of Textiles, Donghua University, Shanghai 201620, China
2 Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China
下载:  全 文 ( PDF ) ( 4493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 频率选择表面(FSS)可实现对特定频率电磁波的选择性透过或反射。为适应武器装备表面及电磁环境的日益复杂化,需要开发可重构的柔性化FSS,以实现谐振频率的可调节、可开关及与复杂曲面的共形。本文分析了FSS重构的基本原理,综述了现有可重构FSS的制备手段,包括通过加入集总二极管、改变周期单元结构和尺寸及材料电磁参数等。结合现有柔性纺织基FSS的多尺度结构及灵活多变的织造技术,指出依托纺织加工手段制备的频率选择织物可兼具易共形、可重构和机械强力,并具有多尺度的灵活可调特征,是柔性基FSS的未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈剑英
张恒宇
肖红
王府梅
关键词:  频率选择表面  柔性  可重构  动态调谐  纺织加工    
Abstract: Electromagnetic wave can be transmitted or reflected by frequency selective surface (FSS) at the resonant frequency. To adapt to the increasing complexity of the weapons' surface and the electromagnetic environment, it is necessary to develop a reconfigurable flexible FSS, which can make the resonant frequency adjustable, switchable and conformal with complex curves. This paper analyzes the basic principles of reconfigurable FSS, and summarizes the available preparation methods of reconfigurable FSS, including adding lumped diodes, changing the size and space of the conductive periodic unit, and changing electromagnetic parameters, etc. It is concluded in our discussion that, owing to the existing multi-scale structure of variable textile-based FSS and the flexible weaving technology, frequency-selective fabrics prepared by textile processing methods can realize conformality, reconfigurability, mechanical strength, and multi-scale and flexible adjustability, thus representing the future trend of flexible-based FSS.
Key words:  frequency selective surface    flexibility    reconfigurable    dynamic tuning    textile processing
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TB34  
基金资助: 国家自然科学基金面上项目(51673211)
通讯作者:  *76echo@vip.sina.com   
作者简介:  陈剑英,2016年6月毕业于内蒙古工业大学,获得服装设计与工程学士学位。现为东华大学纺织学院博士研究生,在肖红教授和王府梅教授的指导下进行研究。目前主要研究领域为新型电磁功能纺织材料的设计和开发。
肖红,博士,军事科学院系统工程研究院军需工程技术研究所高级工程师。兼任军事科学院、东华大学、天津工业大学、北京服装学院硕士研究生导师。1993/9—1997/7于苏州大学获学士学位;2000/9—2003/2于北京服装学院获硕士学位;2003/2—2005/12于东华大学获博士学位。主要从事功能纤维(纱线)及其面料、伪装纺织材料及电磁功能纺织材料的基础理论及产业化应用研究。主持参研国家自然科学基金青年/面上基金、全军重点、科技部重点专项、国家军用标准、武警/公安部/省部级等项目20余项。发表论文159篇,SCI/EI收录34篇。授权发明专利20余项,制订国/部军标14项。
引用本文:    
陈剑英, 张恒宇, 肖红, 王府梅. 频率选择表面的可重构及纺织应用[J]. 材料导报, 2022, 36(15): 20110275-7.
CHEN Jianying, ZHANG Hengyu, XIAO Hong, WANG Fumei. Reconfigurable Frequency Selective Surface and the Textile Applications. Materials Reports, 2022, 36(15): 20110275-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110275  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20110275
1 Munk B A. Frequency selective surfaces: theory and design, A Wiley-Interscience Publication, USA, 2005.
2 Langley R J, Parker E A.Electronics Letters, 1982, 18(7), 294.
3 Guan F, Xiao H, Shi M, et al.Textile Research Journal, 2016, 86(20), 2169.
4 Panwar R, Lee J R.Aerospace Science and Technology, 2017, 66, 216.
5 Li Y, Wang Y, Cao Q.Journal of Applied Physics, 2020, 127(4), 045301.
6 Xu Y, Gao J, Xu N, et al.AIP Advances, 2017, 7(5), 055012.
7 Li W, Wang Y, Sun S, et al.IEEE Access, 2020, 8, 23904.
8 Mamedes D F, Neto A G, Silva J C E, et al.IET Microwaves, Antennas & Propagation, 2018, 12(9), 1483.
9 Qi K, Li L, Su J, et al.Materials, 2019, 12(23), 3989.
10 Huang X G, Shen Z, Feng Q Y, et al.IEEE Transactions on Antennas and Propagation, 2015, 63(7), 3297.
11 Ebrahimi A, Withayachumnankul W, Al-Sarawi S F, et al. In: 2015 IEEE 15th Mediterranean Microwave Symposium (MMS). Lecce, 2015,pp.1.
12 Zhou Q, Liu P, Yu D, et al.IET Microwaves, Antennas and Propagation, 2018, 12(9), 1470.
13 Döken B, Kartal M.Radioengineering, 2019, 28(1), 114.
14 Yang D, Zhai H, Qi R, et al.Microwave and Optical Technology Letters, 2020, 62(6), 2189.
15 Schoenlinner B, Abbaspour-Tamijani A, Kempel L C, et al.IEEE Transactions on Microwave Theory and Techniques, 2004, 52(11),2474.
16 Safari M, Shafai C, Shafai L.IEEE Transactions on Antennas and Propagation, 2015, 63(3),1014.
17 Bayatpur F, Sarabandi K.IEEE Transactions on Antennas and Propagation, 2010, 58(4), 1214.
18 Ebrahimi A, Shen Z, Withayachumnankul W, et al.IEEE Transactions on Antennas and Propagation, 2016, 64(5), 1672.
19 Fuchi K, Buskohl P R, Bazzan G, et al.Journal of Mechanisms and Robotics, 2016, 8(5),051011.
20 Cui Y, Nauroze S A, Tentzeris M M. In: 2019 IEEE MTT-S International Microwave Symposium (IMS). Boston, 2019,pp. 1367.
21 Nauroze S A, Tentzeris M M.IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12), 4944.
22 Nauroze S A, Novelino L S, Tentzeris M M, et al.Proceedings of the National Academy of Sciences, 2018, 115(52), 13210.
23 Fuchi K, Tang J, Crowgey B, et al.IEEE Antennas and Wireless Propagation Letters, 2012, 11, 473.
24 Soltani S, Taylor P S, Parker E A, et al. IEEE Sensors Journal, 2020, 4(4), 1.
25 Chen Y D, Liu C H. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, 2017,pp.265.
26 Khan M R, Hayes G J, Zhang S, et al.IEEE Microwave and Wireless Components Letters, 2012, 22(11), 577.
27 Lei B J, Zamora A, Chun T F, et al.IEEE Microwave and Wireless Components Letters, 2011, 21(9), 465.
28 Ghosh S, Lim S.IEEE Transactions on Antennas and Propagation, 2018, 66(9), 4953.
29 Khan M R, Eaker C B, Bowden E F, et al. Proceedings of the National Academy of Sciences, 2014, 111(39), 14047.
30 Xie F, Tong M S, Wang M, et al. In: 2019 Photonics & Electromagne-tics Research Symposium-Fall (PIERS-Fall). Rome, 2019, pp.332.
31 Liu T.Journal of Microelectromechanical Systems, 2012, 21(2), 443.
32 Abadi S M A M H, Booske J H, Behdad N. IEEE Transactions on Antennas and Propagation, 2015, 64(3), 933.
33 Sivasamy R, Kanagasabai M.IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10), 1678.
34 Choi J H, Ahn J, Kim J B, et al.Small, 2016, 12(14), 1840.
35 Padooru Y R, Yakovlev A B, et al.Physical Review B, 2013,87(11), 115401.
36 Zhang K L, Zhang J Y, Hou Z L, et al.Carbon, 2019, 141, 608.
37 Yang Z, Luo F, Gao L, et al.Journal of Electronic Materials, 2016, 45(10), 5017.
38 Chen M, Sun W, Cai J, et al.Optics Communications, 2017, 382, 144.
39 Yi D, Wei X C, Xu Y L.IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8), 2819.
40 Mishra R, Sahu A, Panwar R.IEEE Photonics Journal, 2019, 11(2), 1.
41 Yaghmaee P, Withayachumnankul W, Horestani A K, et al. In: 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando, 2013,pp. 382.
42 Dickie R, Baine P, Cahill R, et al.Electronics Letters, 2012, 48(11), 611.
43 Doumanis E, Goussetis G, Dickie R, et al.IEEE Transactions on Antennas and Propagation, 2014, 62(4), 2302.
44 Yang G, Kong W, Chang M, et al. In: 2016 IEEE Conference on Electromagnetic Field Computation (CEFC). Miami, 2016,pp. 1.
45 Zheng A, Xia X, Gao S, et al.Liquid Crystals, 2020, 47(1), 83.
46 Seager R D, Chauraya A, Bowman J, et al.Electronics Letters, 2013, 49(24), 1507.
47 Tennant A, Hurley W, Dias T.Electronics Letters, 2012, 48(22), 1386.
48 Guan F, Xiao H, Shi M, et al.Journal of Textile Research, 2016, 37(2),141 (in Chinese).
关福旺, 肖红, 施楣梧,等.纺织学报, 2016, 37(2),141.
49 Whittow W G, Li Y, Torah R, et al.Electronics Letters, 2014, 50(13), 916.
50 Chauraya A, Seager R, Whittow W, et al. In: 2013 Loughborough Antennas & Propagation Conference (LAPC). Leicestershire, 2013,pp.388.
51 Seager R D, Chauraya A, Bowman J, et al. In: the 8th European Confe-rence on Antennas and Propagation (EuCAP 2014). Hague, 2014,pp. 1978.
52 Lee S E, Park K Y, Oh K S, et al.Carbon, 2009, 47(8), 1896.
53 Cavalcante G A, D'Assunção Jr A G, D'Assunção A G.Microwave and Optical Technology Letters, 2014, 56(2), 383.
54 Lyu Z, Tang Z, Xu X, et al. Safety & EMC, 2014(4),79 (in Chinese).
吕志蕊, 唐章宏, 徐欣欣,等.安全与电磁兼容, 2014(4),79.
55 Tak J, Choi J.IEEE Antennas and Wireless Propagation Letters, 2016, 16, 784.
56 Alonso-González L, Ver-Hoeye S, Fernández-García M, et al.IEEE Transactions on Antennas and Propagation, 2018, 66(10), 5291.
57 Shi M, Xiao H, Wang Q.Journal of Textile Research, 2013, 34(2), 73 (in Chinese).
施楣梧,肖红,王群.纺织学报, 2013, 34(2), 73.
58 Xiao H, Cheng H, Shi M, et al.Science & Technology Review, 2016, 34(10), 1. (in Chinese)
肖红, 程焕焕, 施楣梧,等.科技导报, 2016, 34(10), 1.
59 Cheng H, Xiao H, Shi M, et al.Textile Research Journal, 2016, 86(7), 77.
60 Wang Y, Xiao H, Cheng H, et al.Journal of Textile Research, 2017, 38(2),90 (in Chinese).
王亚静, 肖红, 程焕焕,等.纺织学报, 2017, 38(2),90.
61 Liu C, Cai J, Li X, et al.Materials & Design, 2019, 181, 107982.
62 Huang B C, Hong J W, Lo C Y.Applied Physics Letters, 2017, 110(4), 044101.
63 Sun J, Huang Y, Fu C, et al.Nano Energy, 2016, 27, 230.
64 Wang Y, Yu W, Wang F.Textile Research Journal, 2018, 88(10), 1138.
65 Zhao Y, Xiao H, Chen J.Journal of Textile Research, 2020, 41(3), 45 (in Chinese).
赵亚茹, 肖红, 陈剑英.纺织学报, 2020, 41(3), 45.
66 Guo K, Wang X, Hu L, et al.ACS Applied Materials & Interfaces, 2018, 10(23), 19820.
[1] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[2] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[3] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[4] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[5] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[6] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[7] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[8] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[9] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[10] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[11] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[12] 赵会阳, 王豪, 赵亮亮, 张炜楠, 王岩, 吴跃民, 于辉, 孙承月, 琚丹丹, 吴宜勇. 空间太阳电池柔性封装材料与技术研究进展[J]. 材料导报, 2022, 36(22): 22030104-11.
[13] 师建军, 王伟, 朱伟, 梁科, 孔磊, 杨云华, 朱世鹏, 张莹, 李宇. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022, 36(22): 22040393-9.
[14] 刘泰江, 陈俊龙, 赵杰, 陈楠泓, 李依麟, 梁宏富, 杨跃鑫, 姚日晖, 宁洪龙, 彭俊彪. 喷墨打印制备柔性高精度导电图案研究进展[J]. 材料导报, 2022, 36(20): 21010127-9.
[15] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed