Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22030104-11    https://doi.org/10.11896/cldb.22030104
  宇航材料 |
空间太阳电池柔性封装材料与技术研究进展
赵会阳1, 王豪2,*, 赵亮亮1, 张炜楠1, 王岩3, 吴跃民3, 于辉4, 孙承月2, 琚丹丹2, 吴宜勇1,2,*
1 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
2 哈尔滨工业大学空间环境与物质科学研究院,哈尔滨 150001
3 北京空间飞行器总体设计部,北京 100094
4 中国电子科技集团公司第十八研究所,天津 300384
Research Process of Flexible Encapsulation Materials and Technology for Space Solar Cells
ZHAO Huiyang1, WANG Hao2,*, ZHAO Liangliang1, ZHANG Weinan1, WANG Yan3, WU Yuemin3, YU Hui4, SUN Chengyue2, JU Dandan2, WU Yiyong1,2,*
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
3 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
4 Tianjin Institute of Power Sources, Tianjin 300384, China
下载:  全 文 ( PDF ) ( 8122KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于深空探测、空间电站以及商业航天、微纳卫星、长航时临近空间飞行等任务需求,高效率、轻量化、柔性化、高可靠性是未来空间太阳电池阵发展的主题。太阳电池阵由传统的刚性电池阵、半刚性电池阵向柔性电池阵发展。航天器在轨服役过程中需遭受带电粒子辐射、紫外辐射、原子氧等空间环境,因此需在电池表面封装防护层以减缓电池性能退化。作为太阳电池辐射屏蔽层,盖片的辐射防护性能、光学性能、力学性能是保证电池长期在轨高效稳定运行的核心要素。本文总结了近年来聚硅氧烷、透明聚酰亚胺、赝形玻璃盖片等太阳电池柔性封装材料研究进展,归纳了相关的空间环境模拟试验与在轨暴露试验结果,最后针对太阳电池柔性封装材料与技术的发展及应用进行了探讨展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵会阳
王豪
赵亮亮
张炜楠
王岩
吴跃民
于辉
孙承月
琚丹丹
吴宜勇
关键词:  太阳电池  柔性封装  辐射防护  赝形玻璃盖片    
Abstract: Based on the mission requirements of deep space exploration, space power stations, commercial aerospace, micro-nano satellites and long-endurance near-space flight, high efficiency, light weight, flexibility and high reliability are the development themes of space solar array. Solar arrays are developed from traditional rigid array and semi-rigid array to fully flexible array. The spacecraft needs to be exposed to charged particle radiation, ultraviolet radiation and atomic oxygen environment during in-orbit service. Therefore, it is necessary to encapsulate a protective layer on the surface of solar cell to slow down the degradation. As the radiation shielding layer for solar cells, the radiation protection, optical and mechanical properties of cover sheet are the most important. In this paper, the research progress of flexible packaging materials for solar cells, such as polysilsesquioxane, transparent polyimide and pseudomorphic glass were summarized. And the relevant space environment simulation test and in-orbit exposure results were also discussed. Finally, the development and application of flexible packaging materials and techno-logies for solar cells were prospected.
Key words:  solar cell    flexible encapsulation    radiation protection    pseudomorphic glass
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V11  
基金资助: 国家自然科学基金(12175051)
通讯作者:  * HouseWang@hit.edu.cn; wuyiyong@hit.edu.cn   
作者简介:  赵会阳,哈尔滨工业大学材料科学与工程学院博士研究生,在吴宜勇教授的指导下进行研究。目前主要研究领域为材料与器件空间环境效应、空间太阳电池柔性封装材料设计、复合材料、新型功能材料等。已发表SCI论文8篇,申请发明专利11项。
王豪,哈尔滨工业大学空间环境与物质科学研究院副研究员。2016年获得哈尔滨工业大学工学博士学位。主要从事空间环境与物质相互作用研究,重点开展空间超高速粉尘环境地面模拟技术及超高速粉尘环境效应工作。目前在空间粉尘探测载荷设计开发方面获国家自然科学基金、民用航天、重点研发等多项支持。
吴宜勇,哈尔滨工业大学空间环境与物质科学研究院/材料科学与工程学院教授、博士研究生导师,空间环境材料行为及评价技术国家级重点实验室副主任,“空间环境地面模拟装置”国家大科学工程综合环境模拟系统科学家。1995年获得哈尔滨工业大学工学博士学位。目前主要从事空间综合环境模拟与在轨评价技术,新型太阳电池与空间应用,功能材料辐照损伤理论、缺陷表征与防护技术,极端环境效应理论与探测技术等方面的研究工作。先后主持或承担了国防973专题、工程院战略咨询、国家自然科学基金、国防预研及国防基础科研等项目30余项。发表SCI论文100余篇。
引用本文:    
赵会阳, 王豪, 赵亮亮, 张炜楠, 王岩, 吴跃民, 于辉, 孙承月, 琚丹丹, 吴宜勇. 空间太阳电池柔性封装材料与技术研究进展[J]. 材料导报, 2022, 36(22): 22030104-11.
ZHAO Huiyang, WANG Hao, ZHAO Liangliang, ZHANG Weinan, WANG Yan, WU Yuemin, YU Hui, SUN Chengyue, JU Dandan, WU Yiyong. Research Process of Flexible Encapsulation Materials and Technology for Space Solar Cells. Materials Reports, 2022, 36(22): 22030104-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030104  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22030104
1 Campesato R, Casale M, Gabetta G, et al. In:IEEE 44th Photovoltaic Specialist Conference (PVSC). Washington, 2017, pp.545.
2 Vergnet D, Mhibik O, Kurvers J P, et al.In:IEEE 46th Photovoltaic Specialists Conference (PVSC).Chicago, 2019,pp.2808.
3 Lee H, Yamasaki M, Murozono M.Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(4), 197.
4 Boulanger B, Baudasse Y, Guinot F, et al.In:11th European Space Power Conference (ESPC).Thessaloniki, 2017, pp.01005.
5 Spence B R, White S, Lapointe M, et al.In:IEEE 7th World Conference on Photovoltaic Energy Conversion(WCPEC).Waikoloa,2018,pp.3522.
6 Chamberlain M K, Kiefer S H, Lapointe M, et al.Acta Astronautica, 2021, 179, 407.
7 Hoang B, White S, Spence B, et al. In:2016 IEEE Aerospace Confe-rence.Big Sky, 2016, pp.1.
8 Banik J, Kiefer S, Lapointe M, et al.In:2018 IEEE Aerospace Confe-rence.Big Sky, 2018, pp.1.
9 Han J H, Kim C G.Composite Structures, 2006, 72(2), 218.
10 Obara T, Matsumoto H, Koga K.Acta Astronautica, 2012, 71, 1.
11 Xu B, Wu Z, Zhang P. In:7th International Conference on Applied Electrostatics (ICAES).Dalian, 2013, pp.012042.
12 Shen Z, Dai W, Ding Y. In:5th Symposium on Novel Optoelectronic Detection Technology and Application.Xi'an, 2019, pp.110233H.
13 Zeng D, Wang Y.In:IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA).Chengdu, 2018, pp.266.
14 Liu D L, Liu S H, Panetta C J, et al.In:IEEE 35th Photovoltaic Specia-lists Conference.Honolulu, 2010, pp.002563.
15 Messenger S R, Kruer M A.IEEE Transactions on Nuclear Science, 2018, 65(1), 149.
16 Khan A R, Nguyen D M, Toyoda K, et al.IEEE Transactions on Plasma Science, 2019, 47(2), 1445.
17 Kwak P, Kim N, Kim J, et al.Solar Energy Materials and Solar Cells, 2017, 169, 210.
18 Brandhorst H, Isaacs-Smith T, Wells B.In:4th World Conference on Photovoltaic Energy Conversion.Waikoloa, 2006, pp.1887.
19 Liu S H, Granata J E, Meshishnek M J, et al.In:IEEE 33rd Photovoltaic Specialists Conference.San Diego, 2008, pp.1197.
20 Imaizumi M, Takahashi M, Takamoto T.In:IEEE 35th Photovoltaic Specialists Conference.Honolulu, 2010, pp.000128.
21 Smeenk N J, Mooney C, Feenstra J, et al.Polymer Degradation and Stability, 2013, 98(12), 2503.
22 Cao N N, Chen M J, Ye X J. Chinese Journal of Power Sources, 2016, 40(3), 600(in Chinese).
曹娜娜, 陈萌炯, 叶晓军.电源技术, 2016, 40(3), 600.
23 Qian M, Mao X, Wu M, et al.Advanced Materials Technologies, 2021, 6(12), 2100603.
24 Yu Y Y, Chien W C, Tsai T W.Polymer Testing, 2010, 29(1), 33.
25 Farah J.In:IEEE 38th Photovoltaic Specialists Conference (PVSC).Austin, 2012, pp.2868.
26 Pan X F, Wu B, Gao H L, et al. Advanced Materials, 2021, 32(2), 2105299.
27 Huang J, Zhang G, Dong B, et al.Nanomaterials, 2021, 11(3), 562.
28 Wu X, Shu C, Zhong M, et al. Applied Surface Science, 2022, 583,152558.
29 Mi Z, Liu Z, Yao J, et al. Polymer Degradation and Stability, 2018, 151, 80.
30 Yuan C, Sun Z, Wang Y. Journal of Polymer Research, 2020, 27(7), 193.
31 Wang C, Yu B, Jiang C, et al. Polymer Bulletin, 2020, 77(12), 6509.
32 Wu Q, Ma X, Zheng F, et al. Polymer International, 2019, 68(6), 1186.
33 Tapaswi P K, Ha C S. Macromolecular Chemistry and Physics, 2019, 220(3), 1800313.
34 Ni H J, Liu J G, Wang Z H, et al. Journal of Industrial and Engineering Chemistry, 2015, 28, 16.
35 Wilt D, Howard A, Snyder N, et al.In:EEE 37th Photovoltaic Specia-lists Conference. Seattle, 2011, pp.001949.
36 Wilt D, Montgomery K, Bradshaw G, et al. In:IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).Boston, 2017, pp.950.
37 Beauchemin R D, Wilt D M, Hausgen P E.In:IEEE 44th Photovoltaic Specialist Conference (PVSC).Washington, 2017, pp.102.
38 Merrill J, Wilt D, Chapman D, et al. In:11th European Space Power Conferences.Thessaloniki, 2017,pp. 01001.
39 Zhao H, Wang H, Guo H, et al. Vacuum, 2021, 194, 110607.
40 Zhao H, Wang H, Sun C, et al. Vacuum, 2022, 202, 111207.
41 Gao J F, Hao X L, Lyu W Z. Chinese Journal of Power Sources, 2017, 41(8), 1136(in Chinese).
高剑锋, 郝晓丽, 吕伟中.电源技术, 2017, 41(8), 1136.
42 Levin Z S, Wilt D M, Hoffman R, et al. In:Conference on Physics, Si-mulation and Photonic Engineering of Photovoltaic Devices Ⅲ. Sam Francisco, 2014, pp.8981.
43 Armbruster M, Wilt D M, Cooper R J, et al. In:IEEE 43rd Photovoltaic Specialists Conference (PVSC).Portland, 2016, pp.2554.
44 Martinez C L, Pellicori S F. In:IEEE 43rd Photovoltaic Specialists Conference (PVSC).Portland, 2016, pp.2586.
45 Morioka C, Shimazaki K, Kawakita S, et al. Progress in Photovoltaics, 2011, 19(7), 825.
46 Wrosch M, Walmsley N, Stern T, et al. In:IEEE 39th Photovoltaic Specialists Conference (PVSC).Tampa, 2013, pp.2809.
47 Wilt D M, Howard A D, Bradshaw G K, et al.In:IEEE 42nd Photovol-taic Specialist Conference (PVSC).New Orleans, 2015, pp.1.
[1] 陈秋雨, 张城皓, 曹可, 陆永俊, 王连才, 张秀芹, 马慧玲, 翟茂林. 高分子基辐射防护材料研究进展[J]. 材料导报, 2022, 36(Z1): 21080080-4.
[2] 高慧, 杨瑞霞. DBR结构设计与GaInP/GaInAs/Ge太阳电池性能关系[J]. 材料导报, 2022, 36(4): 20110082-6.
[3] 何颖, 刘峰, 蒋丹枫, 周江, 刘夏杰, 李珂娴, 沈先荣. 基于钨/钆三层结构的中子/γ一体化辐射防护服材料的设计[J]. 材料导报, 2022, 36(13): 21010270-4.
[4] 刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
[5] 刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
[6] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[7] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[8] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[9] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[10] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[11] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[12] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[13] 李恒月, 龚辰迪, 黄可卿, 阳军亮. 基于印刷技术制备钙钛矿太阳电池[J]. 《材料导报》期刊社, 2018, 32(9): 1385-1400.
[14] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[15] 郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed