Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21010270-4    https://doi.org/10.11896/cldb.21010270
  金属与金属基复合材料 |
基于钨/钆三层结构的中子/γ一体化辐射防护服材料的设计
何颖1,*, 刘峰2, 蒋丹枫2, 周江2, 刘夏杰2, 李珂娴1, 沈先荣1
1 中国人民解放军海军特色医学中心,上海 200433
2 中广核研究院有限公司,广东 深圳 518000
Design of W/Gd-based Trilaminar Neutron/γ-integrated Radiation Protection Clothing Material
HE Ying1,*, LIU Feng2, JIANG Danfeng2, ZHOU Jiang2, LIU Xiajie2, LI Kexian1, SHEN Xianrong1
1 Naval Medical Center of the PLA, Shanghai 200433, China
2 China Nuclear Power Technology Research Institute, Shenzhen 518000, Guangdong, China
下载:  全 文 ( PDF ) ( 2749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当发生核事故与核应急时,反应堆内的高辐射水平会对应急人员的健康造成极大危害。目前我国的辐射防护产品多为防护单一射线类型,且针对的是低能射线,无法满足核应急作业的需求。本工作基于蒙特卡罗粒子输运程序,设计了一种中子/γ一体化辐射防护材料,对其厚度与屏蔽性能进行了研究,并将蒙特卡罗模拟的屏蔽性能数据与实验测试结果进行了对比验证。结果表明,5 mm的厚度能满足屏蔽性能要求,中能γ射线与慢中子屏蔽率的模拟值分别为21.52%和78.7%,而实验测试值分别为20.61%和88.2%,模拟结果与实验结果符合较好,说明蒙特卡罗方法对辐射防护材料设计具有很好的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何颖
刘峰
蒋丹枫
周江
刘夏杰
李珂娴
沈先荣
关键词:  屏蔽材料  蒙特卡罗  钨/钆  三层结构  辐射防护服    
Abstract: In the event of nuclear accidents or emergency, high radiation in the reactor will do great harm to human health. Currently, domestic radiation protection products are mostly targeted for the single-type radiation and aimed at low-energy radiation, which can not meet the needs of nuclear emergency operations. In this work, a kind of neutron/γ radiation protection material was designed based on the Monte Carlo particle transport program. The thickness and shielding performance were studied, and the shielding performance simulated by Monte Carlo was verified by experimental tests. The results show that thickness of 5 mm can meet the requirements of radiation shielding. The simulated shielding rates of medium energy γ-rays and slow neutrons are 21.42% and 78.79%, while the experimental values are 20.61% and 88.2% respectively. The simulation results are in good agreement with the experimental results, indicating that the Monte Carlo method had good guiding significance for radiation protection material design.
Key words:  shielding material    Monte Carlo    tungsten/gadolinium    trilaminar    radiation protection clothing
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TL99  
通讯作者:  * yinghe_hys@163.com   
作者简介:  何颖,海军特色医学中心研究员,2008年获第二军医大学医学遗传学博士学位,现主要从事核辐射医学防护研究,发表学术论文50余篇,授权国家发明专利8项。
引用本文:    
何颖, 刘峰, 蒋丹枫, 周江, 刘夏杰, 李珂娴, 沈先荣. 基于钨/钆三层结构的中子/γ一体化辐射防护服材料的设计[J]. 材料导报, 2022, 36(13): 21010270-4.
HE Ying, LIU Feng, JIANG Danfeng, ZHOU Jiang, LIU Xiajie, LI Kexian, SHEN Xianrong. Design of W/Gd-based Trilaminar Neutron/γ-integrated Radiation Protection Clothing Material. Materials Reports, 2022, 36(13): 21010270-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010270  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21010270
1 Chen J, Huang H L, Qian Y Y, et al. Sichuang Rare Earth, 2008, 2(3), 14 (in Chinese).
陈俊, 黄宏林, 钱玉英, 等. 四川稀土, 2008, 2(3), 14.
2 Li J S, Dai Y D, Zhang Y, et al. Atomic Energy Science and Technology, 2011, 45(1), 117 (in Chinese).
李江苏, 戴耀东, 张瑜, 等. 原子能科学技术, 2011, 45(1), 117.
3 Dong Y, Dai Y D, Chang S Q, et al. Materials Reports, 2012, 26(S2), 184 (in Chinese).
董宇, 戴耀东, 常树全, 等. 材料导报, 2012, 26(S2), 184.
4 Yang T, Shi M, Wan X C, et al. Cotton Textile Technology, 2020, 48(6), 17(in Chinese).
杨涛, 石敏, 万星辰, 等. 棉纺织技术, 2020, 48(6), 17.
5 Zhang P T, Wu T, Shi M R, et al. Chinese Nursing Research, 2022, 36(2), 366(in Chinese).
张娉婷, 吴婷, 施美蓉, 等. 护理研究, 2022, 36(2), 366.
6 Liang W, Yang Q F, Ma A J. China Personal Protection Equipment, 2004(6), 19 (in Chinese).
梁威, 杨青芳, 马爱洁. 中国个体防护装备, 2004(6), 19.
7 Li J S, Zhang Y, Sun H, et al. Acta Materiae Compositae Sinica, 2011, 28(1), 43(in Chinese).
李江苏, 张瑜, 孙浩, 等. 复合材料学报, 2011, 28(1), 43.
8 Xiong J, Song T. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(12), 2209 (in Chinese).
熊俊, 宋涛. 中国组织工程研究与临床康复, 2010, 14(12), 2209.
9 Briesmeister J F. MCNP-A general Monte Carlo N-particle transport code, version 5, Los Alamos National Laboratory Press, USA, 2003.
10 Saloman E B, Hubbell J H, Scofield J H. Atomic Data and Nuclear Data Tables, 1988, 38(1), 1.
11 Zhao S, Huo Z P, Zhong G Q, et al. Journal of Functional Materials, 2021, 52(3), 3001(in Chinese).
赵盛, 霍志鹏, 钟国强, 等. 功能材料, 2021, 52(3), 3001.
12 Gu C Y. Preparation and properties study of X-ray shielding rare earth/polymer composite fibers. Master's Thesis, Beijing Institute of Fashion Technology, China, 2016 (in Chinese).
谷春燕. 防X射线稀土/聚合物复合纤维的制备及性能研究. 硕士学位论文, 北京服装学院, 2016.
13 Bi Y, Tang C J, Yue Q, et al. Nuclear Electronics & Detection Technology, 2010, 30(8), 1126 (in Chinese).
毕勇, 唐昌建, 岳骞, 等. 核电子学与探测技术, 2010, 30(8), 1126.
14 Gao X J, Yan D M, Cao J W, et al. Ceramics, 2016(11), 15 (in Chinese).
高晓菊, 燕东明, 曹剑武, 等. 陶瓷, 2016(11), 15.
[1] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[2] 徐天寒, 张叶, 戴耀东. 热中子防护Gd/Al复合材料的设计[J]. 材料导报, 2021, 35(22): 22121-22124.
[3] 王锋, 孙源楠, 苏兴康. 有机工质反应堆燃料组件物理计算及堆芯设计[J]. 材料导报, 2021, 35(18): 18195-18199.
[4] 何林, 蔡永军, 李强. 中子和伽马射线综合屏蔽材料研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1107-1113.
[5] 钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed