Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4258-4263    https://doi.org/10.11896/j.issn.1005-023X.2018.24.009
  无机非金属及其复合材料 |
颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式
钟汝能1,2, 郑勤红1,2, 向泰1, 姚斌2
1 云南师范大学能源与环境科学学院,昆明 650500;
2 云南师范大学云南省光电信息技术重点实验室,昆明 650500
A Modified General Effective Medium Formula for Calculating the Effective Dielectric Properties of Particle-filled Binary Composite Materials
ZHONG Runeng1,2, ZHENG Qinhong1,2, XIANG Tai1, YAO Bin2
1 School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500;
2 Key Laboratory of Photoelectric Information Technology of Yunnan Province , Yunnan Normal University, Kunming 650500
下载:  全 文 ( PDF ) ( 2406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介电特性在复合材料的电磁效应研究和材料设计中具有重要的作用。本工作在研究传统通用有效介质(GEM,General Effective Medium)公式的局限性基础上,提出了用于预测和计算颗粒填充二元复合材料等效介电特性的修正通用有效介质(MGEM,Modified General Effective Medium)公式。运用MC-FEM(Monte Carlo-Finite Element Method)方法分析计算各种参数条件下颗粒随机填充二元复合材料的等效介电特性,并与MGEM公式计算结果进行比较,验证MGEM公式的正确性和有效性。此外,还将MGEM的预测结果与部分经典理论公式的计算结果、部分文献报道的实验测量数据进行了比较。研究表明,在不同介电常数比(1/50~50)和不同体积分数(0~1)的情况下,MGEM公式预测结果与MC-FEM模型结果完全吻合,与实验测量结果基本一致,为颗粒填充二元复合材料等效介电性能分析提供了一种具有较高计算精度的理论计算方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟汝能
郑勤红
向泰
姚斌
关键词:  颗粒填充二元复合材料  等效介电特性  修正通用有效介质公式  蒙特卡罗有限元方法    
Abstract: Dielectric property has been regarded as an important factor in the research of electromagnetic effect and in material design for composite materials. To break through the limitations of the traditional general effective medium (GEM) formula, a modified formula, i.e. modified general effective medium (MGEM) was presented in this study for the dielectric property prediction and calculation of particle-filled binary composite materials. We obtained the effective dielectric properties of the random particle-filled binary composite materials under various parameters by the simulation based on Monte Carlo finite element method (MC-FEM), and by the calculation based on the proposed MGEM formula, respectively. Moreover, we also conducted calculations based on some typical theoretical formulas and collected experimental data in some previously published works. It can be concluded that the prediction results of MGEM formula have complete coincidence with the simulated results of MC-FEM, and are essentially in agreement with the experimental results, within the dielectric constant range of 1/50—50 and the filling volume ratio range of 0—1. MGEM is expected to provide an accurate, reliable, and general-purpose theoretical method for predicting and calculating the effective dielectric pro-perties of particle-filled binary composite materials.
Key words:  particle-filled binary composite materials    effective dielectric properties    modified general effective medium    Monte Carlo finite element method
                    发布日期:  2019-01-23
ZTFLH:  TB33  
  O441.6  
基金资助: 国家自然科学基金(51362031);云南省科技计划面上项目(2016FB141)
通讯作者:  郑勤红:通信作者,男,教授,博士研究生导师,研究方向为有效介质和散射理论、计算电磁学和数值算法研究 E-mail:zheng_qh62@aliyun.com   
作者简介:  钟汝能:男,1979年生,副教授,博士研究生,研究方向为计算电磁学和材料新技术 E-mail:zhong_rn@126.com
引用本文:    
钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
ZHONG Runeng, ZHENG Qinhong, XIANG Tai, YAO Bin. A Modified General Effective Medium Formula for Calculating the Effective Dielectric Properties of Particle-filled Binary Composite Materials. Materials Reports, 2018, 32(24): 4258-4263.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.009  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4258
1 Li Y C, Fu X L, Zhan Y H,et al. Advances in polymer dielectrics with high dielectric constant and low dielectric loss[J] .Materials Review A: Review Papers,2017(8):18(in Chinese).
李玉超,付雪连,战艳虎,等.高介电常数、低介电损耗聚合物复合电介质材料研究进展[J].材料导报:综述篇,2017(8):18.
2 Liao Y, Cai K, Zhang Y,et al. An approach to characterize dielectric properties of fiber-reinforce composites with high volume fraction[J].Acta Physica Sinica,2016,65(2):24102(in Chinese).
廖意,蔡昆,张元,等.高浓度纤维增强材料介电特性计算方法[J].物理学报,2016,65(2):24102.
3 Simpkin R. Derivation of Lichtenecker’s Logarithmic Mixture Formula From Maxwell’s Equations[J].IEEE Transactions on Microwave Theory and Techniques,2010,58(3):545.
4 LI Gun, Zhang Liang, Du Ning,et al. Composite material theoretical models for dielectric behavior of biological systems[J].Materials Review A: Review Papers,2017,31(8):18(in Chinese).
李滚,张亮,杜宁,等.生物体系介电性质的复合材料理论模型[J].材料导报:综述篇,2017,31(8):18.
5 Chen W, Hsieh M. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J].Ceramics International,2017,43:S343.
6 Wu K T,Yuan Y, Zhang S R, et al. Properties of low loss ZrTi2O6 filled PTFE composite substrates[J].Acta Materiae Compositae Sinica,2013,30(6):76(in Chinese).
吴开拓,袁颖,张树人,等.低损耗ZrTi2O6填充PTFE复合基板性能[J].复合材料学报,2013,30(6):76.
7 Birchak J R, Gardner C G, Hipp J E, et al. High dielectric constant microwave probes for sensing soil moisture[J].Proceedings of the IEEE,1974,62(1):93.
8 Huang X Y, Ke Q Q, Jiang P K, et al. Particle-filled polymer composites with high dielectric constant[J].Chinese Polymer Bulletin,2006(12):39.
黄兴溢,柯清泉,江平开,等.颗粒填充聚合物高介电复合材料[J].高分子通报,2006(12):39.
9 Elena Ciomaga C, Stefania Olariu C, Padurariu L, et al. Low field permittivity of ferroelectric-ferrite ceramic composites: Experiment and modeling[J].Journal of Applied Physics,2012,112(9):134404.
10 Qi J, Sihvola A. Dispersion of the dielectric Frohlich model and mixtures[J].IEEE Transactions on Dielectrics & Electrical Insulation,2011,18(1):149.
11 Chen W, Hsieh M. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J].Ceramics International,2017,43:S343.
12 Xiang T, Zhong R N, Yao B, et al. Particle size influence on the effective permeability of composite materials[J].Communications in Theoretical Physics,2018,69(5):598.
13 Zakri T, Laurent J P, Vauclin M. Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory[J].Journal of Physics D Applied Physics,1998,31(13):1589.
14 Wakino K, Okada T, Yoshida N, et al. A new equation for predicting the dielectric constant of a mixture[J]. Journal of the American Ceramic Society,2010,76(10):2588.
15 陈小林,成永红,吴锴,等.两相复合材料等效复介电常数的计算[J].自然科学进展,2009(5):532.
16 Karkkainen K K, Sihvola A H, Nikoskinen K I. Effective permittivity of mixtures: Numerical validation by the FDTD method[J].IEEE Trans Geoscience & Remote Sensing,2000,38(3):1303.
17 Zhao X, Wu Y, Fan Z, et al. Three-dimensional simulations of the complex dielectric properties of random composites by finite element method[J].Journal of Applied Physics,2004,95(12):8110.
18 Mclachlau D, Blaskiewicz M, Newnham R. Electrical Resistivity of Composites[J].Journal of the American Ceramic Society,1990,73(8):2187.
19 Shivola A H. Self-consistency aspects of dielectric mixing theories[J].IEEE Transactions on Geoscience & Remote Sensing,1989,27(4):403.
20 Nelson S O, You T S. Relationships between microwave permittivities of solid and pulverised plastics[J].Journal of Physics D Applied Physics,1990,23(3):346.
[1] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[2] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[3] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[4] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[5] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[6] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[7] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed