A Modified General Effective Medium Formula for Calculating the Effective Dielectric Properties of Particle-filled Binary Composite Materials
ZHONG Runeng1,2, ZHENG Qinhong1,2, XIANG Tai1, YAO Bin2
1 School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500; 2 Key Laboratory of Photoelectric Information Technology of Yunnan Province , Yunnan Normal University, Kunming 650500
摘要 介电特性在复合材料的电磁效应研究和材料设计中具有重要的作用。本工作在研究传统通用有效介质(GEM,General Effective Medium)公式的局限性基础上,提出了用于预测和计算颗粒填充二元复合材料等效介电特性的修正通用有效介质(MGEM,Modified General Effective Medium)公式。运用MC-FEM(Monte Carlo-Finite Element Method)方法分析计算各种参数条件下颗粒随机填充二元复合材料的等效介电特性,并与MGEM公式计算结果进行比较,验证MGEM公式的正确性和有效性。此外,还将MGEM的预测结果与部分经典理论公式的计算结果、部分文献报道的实验测量数据进行了比较。研究表明,在不同介电常数比(1/50~50)和不同体积分数(0~1)的情况下,MGEM公式预测结果与MC-FEM模型结果完全吻合,与实验测量结果基本一致,为颗粒填充二元复合材料等效介电性能分析提供了一种具有较高计算精度的理论计算方法。
Abstract: Dielectric property has been regarded as an important factor in the research of electromagnetic effect and in material design for composite materials. To break through the limitations of the traditional general effective medium (GEM) formula, a modified formula, i.e. modified general effective medium (MGEM) was presented in this study for the dielectric property prediction and calculation of particle-filled binary composite materials. We obtained the effective dielectric properties of the random particle-filled binary composite materials under various parameters by the simulation based on Monte Carlo finite element method (MC-FEM), and by the calculation based on the proposed MGEM formula, respectively. Moreover, we also conducted calculations based on some typical theoretical formulas and collected experimental data in some previously published works. It can be concluded that the prediction results of MGEM formula have complete coincidence with the simulated results of MC-FEM, and are essentially in agreement with the experimental results, within the dielectric constant range of 1/50—50 and the filling volume ratio range of 0—1. MGEM is expected to provide an accurate, reliable, and general-purpose theoretical method for predicting and calculating the effective dielectric pro-perties of particle-filled binary composite materials.
钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
ZHONG Runeng, ZHENG Qinhong, XIANG Tai, YAO Bin. A Modified General Effective Medium Formula for Calculating the Effective Dielectric Properties of Particle-filled Binary Composite Materials. Materials Reports, 2018, 32(24): 4258-4263.
1 Li Y C, Fu X L, Zhan Y H,et al. Advances in polymer dielectrics with high dielectric constant and low dielectric loss[J] .Materials Review A: Review Papers,2017(8):18(in Chinese). 李玉超,付雪连,战艳虎,等.高介电常数、低介电损耗聚合物复合电介质材料研究进展[J].材料导报:综述篇,2017(8):18. 2 Liao Y, Cai K, Zhang Y,et al. An approach to characterize dielectric properties of fiber-reinforce composites with high volume fraction[J].Acta Physica Sinica,2016,65(2):24102(in Chinese). 廖意,蔡昆,张元,等.高浓度纤维增强材料介电特性计算方法[J].物理学报,2016,65(2):24102. 3 Simpkin R. Derivation of Lichtenecker’s Logarithmic Mixture Formula From Maxwell’s Equations[J].IEEE Transactions on Microwave Theory and Techniques,2010,58(3):545. 4 LI Gun, Zhang Liang, Du Ning,et al. Composite material theoretical models for dielectric behavior of biological systems[J].Materials Review A: Review Papers,2017,31(8):18(in Chinese). 李滚,张亮,杜宁,等.生物体系介电性质的复合材料理论模型[J].材料导报:综述篇,2017,31(8):18. 5 Chen W, Hsieh M. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J].Ceramics International,2017,43:S343. 6 Wu K T,Yuan Y, Zhang S R, et al. Properties of low loss ZrTi2O6 filled PTFE composite substrates[J].Acta Materiae Compositae Sinica,2013,30(6):76(in Chinese). 吴开拓,袁颖,张树人,等.低损耗ZrTi2O6填充PTFE复合基板性能[J].复合材料学报,2013,30(6):76. 7 Birchak J R, Gardner C G, Hipp J E, et al. High dielectric constant microwave probes for sensing soil moisture[J].Proceedings of the IEEE,1974,62(1):93. 8 Huang X Y, Ke Q Q, Jiang P K, et al. Particle-filled polymer composites with high dielectric constant[J].Chinese Polymer Bulletin,2006(12):39. 黄兴溢,柯清泉,江平开,等.颗粒填充聚合物高介电复合材料[J].高分子通报,2006(12):39. 9 Elena Ciomaga C, Stefania Olariu C, Padurariu L, et al. Low field permittivity of ferroelectric-ferrite ceramic composites: Experiment and modeling[J].Journal of Applied Physics,2012,112(9):134404. 10 Qi J, Sihvola A. Dispersion of the dielectric Frohlich model and mixtures[J].IEEE Transactions on Dielectrics & Electrical Insulation,2011,18(1):149. 11 Chen W, Hsieh M. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J].Ceramics International,2017,43:S343. 12 Xiang T, Zhong R N, Yao B, et al. Particle size influence on the effective permeability of composite materials[J].Communications in Theoretical Physics,2018,69(5):598. 13 Zakri T, Laurent J P, Vauclin M. Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory[J].Journal of Physics D Applied Physics,1998,31(13):1589. 14 Wakino K, Okada T, Yoshida N, et al. A new equation for predicting the dielectric constant of a mixture[J]. Journal of the American Ceramic Society,2010,76(10):2588. 15 陈小林,成永红,吴锴,等.两相复合材料等效复介电常数的计算[J].自然科学进展,2009(5):532. 16 Karkkainen K K, Sihvola A H, Nikoskinen K I. Effective permittivity of mixtures: Numerical validation by the FDTD method[J].IEEE Trans Geoscience & Remote Sensing,2000,38(3):1303. 17 Zhao X, Wu Y, Fan Z, et al. Three-dimensional simulations of the complex dielectric properties of random composites by finite element method[J].Journal of Applied Physics,2004,95(12):8110. 18 Mclachlau D, Blaskiewicz M, Newnham R. Electrical Resistivity of Composites[J].Journal of the American Ceramic Society,1990,73(8):2187. 19 Shivola A H. Self-consistency aspects of dielectric mixing theories[J].IEEE Transactions on Geoscience & Remote Sensing,1989,27(4):403. 20 Nelson S O, You T S. Relationships between microwave permittivities of solid and pulverised plastics[J].Journal of Physics D Applied Physics,1990,23(3):346.