Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1412-1416    https://doi.org/10.11896/j.issn.1005-023X.2018.09.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性
刘仪柯1,唐雅琴1,蒋良兴2,刘芳洋2,秦 勤2,张 坤3
1 贵州理工学院材料与冶金工程学院,贵阳 550003;
2 中南大学冶金与环境学院, 长沙 410083;
3 格林美股份有限公司,深圳 518101
Photovoltaic Characteristics of Cu2ZnSn(SxSe1-x)4 Thin Films Synthesizedvia the Process of Cu-Zn-Sn Presputtering and SubsequentSulfurization (Selenization) Annealing
LIU Yike1, TANG Yaqin1, JIANG Liangxing2, LIU Fangyang2, QIN Qin2, ZHANG Kun3
1 School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003;
2 School of Metallurgy and Environment, Central South University, Changsha 410083;
3 Gem Incorporated Company, Shenzhen 518101
下载:  全 文 ( PDF ) ( 1697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溅射工艺制备Cu-Zn-Sn金属预制层并尝试在多种退火方案(硫化退火、硒化退火、不同温度下硫化后硒化)下对其进行退火处理,探索出一种只需采用金属预制层即可完成CZTSSe制备的退火工艺制度。通过扫描电镜对比研究了不同退火制度下Cu2ZnSn(SxSe1-x)4薄膜的形貌差异,发现低温硫化后硒化工艺可以有效减少因硫化温度过高引起的薄膜中孔洞较多的问题,有利于薄膜的平整与致密化。在此基础上,采用X射线荧光光谱、扫描电镜、X射线衍射及拉曼光谱对不同硫化温度(200 ℃、300 ℃、 400 ℃、 500 ℃)下硫化后硒化工艺制备的Cu2ZnSn(SxSe1-x)4薄膜的成分、形貌、物相结构及结晶性能进行了表征和分析。结果表明,300 ℃下硫化后硒化获得的Cu2ZnSn(SxSe1-x)4较其他温度下硫化后硒化获得的产物有着更好的形貌及结晶性能,其器件的光电转换效率为2.09%,远高于500 ℃下硫化后硒化工艺所得薄膜器件的效率(0.94%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘仪柯
唐雅琴
蒋良兴
刘芳洋
秦 勤
张 坤
关键词:  薄膜太阳电池  铜锌锡硫硒  溅射预制层  硫化  硒化  退火制度    
Abstract: By applying several annealing schemes (sulfurization, selenization, sulfurization at various temperatures→selenization) to the annealing process of the magnetron sputtered Cu-Zn-Sn coating, this work made a successful attempt to develop an annealing scheme that enables the production of CZTSSe thin film on the basis of merely a presputtered metallic coating. We conducted the morphological analyses upon the Cu2ZnSn(SxSe1-x)4 films formed through different annealing schemes and revealed that a relatively low sulfurization temperatures can benefit the flatness and densification of the resultant film by attenuating the heat-induced porosification effect. A comparative study was then carried out upon the effect of the sulfurization temperature (200 ℃, 300 ℃, 400 ℃, 500 ℃) on the properties of Cu2ZnSn(SxSe1-x)4 thin films, by measuring the films’ composition, morphology, structure and crystallinity via XRF, SEM, XRD and Raman scattering. Among the above competitors, the Cu2ZnSn(SxSe1-x)4 film obtained with 300 ℃ sulfurization→selenization exhibits the most favorable morphology and crystallinity, as well as a power conversion efficiency of 2.09% which far outperforms the one with 500 ℃ sulfurization→selenization (0.94%) owing to the boost of short-circuit current and fill factor.
Key words:  thin film solar cell    Cu2ZnSn(SxSe1-x)4    presputtering    sulfurization    selenization    annealing scheme
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O472.8  
基金资助: 国家自然科学基金(51674298;51604088);贵州省科技计划项目(黔科合基础[2017]1064;黔科合LH字[2015]7091)
通讯作者:  蒋良兴:通信作者,男,1982年生,博士,副教授,主要从事薄膜太阳电池材料与功能阳极材料的研究 E-mail:lxjiang@csu.edu.cn   
作者简介:  刘仪柯:男,1981年生,博士,副教授,主要从事新能源材料与器件和纳米功能材料等研究 E-mail:liuyikecsu@163.com
引用本文:    
刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
LIU Yike, TANG Yaqin, JIANG Liangxing, LIU Fangyang, QIN Qin, ZHANG Kun. Photovoltaic Characteristics of Cu2ZnSn(SxSe1-x)4 Thin Films Synthesizedvia the Process of Cu-Zn-Sn Presputtering and SubsequentSulfurization (Selenization) Annealing. Materials Reports, 2018, 32(9): 1412-1416.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.003  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1412
1 Todorov T, Gunawan O, Chey S J, et al. Progress towards marke-table earth-abundant chalcogenide solar cells[J].Thin Solid Films,2011,519(21):7378.
2 Sun Y X, Zhang Y Z, Wang H, et al.Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells[J].Journal of Materials Chemistry A,2013,1(23):6880.
3 Kim J, Hiroi H, Todorov T K, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter[J].Advanced Materials,2014,26(44):7427.
4 Zhang K, Liu F Y, Lai Y Q, et al. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells[J].Acta Physica Sinica,2011,60(2):790(in Chinese).
张坤,刘芳洋,赖延清,等.太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征[J].物理学报,2011,60(2):790.
5 Ericson T, Kubart T, Scragg J J, et al. Reactive sputtering of precursors for Cu2ZnSnS4 thin film solar cells[J].Thin Solid Films,2012,520(24):7093.
6 Weber A, Mainz R, Schock H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J].Journal of Applied Physics,2010,107(1):013516.
7 Wang K, Gunawan O, Todorov T, et al. Thermally evaporated Cu2-ZnSnS4 solar cells[J].Applied Physics Letters,2010,97(14):143508.
8 Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids[J].Solar Energy Materials and Solar Cells,2010,94(2):207.
9 Riha S C, Fredrick S J, Sambur J B, et al.Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photoca-thodes[J].ACS Applied Materials & Interfaces,2011,3(1):58.
10 Sun K W, Su Z H, Han Z L, et al. Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J].Acta Physica Sinica,2014,63(1):018801(in Chinese).
孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):018801.
11 Todorov T K, Tang J, Bag S, et al. Beyond 11%efficiency: Characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J].Advanced Energy Mate-rials,2013,3(1):34.
12 Xie M, Zhuang D M, Zhao M, et al. Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target[J].Vacuum,2014,101:146.
13 Chawla V, Clemens B. Effect of composition on high efficiency CZTSSe devices fabricated using Co-sputtering of compound targets[C]∥38th IEEE Photovoltaic Specialists Conference.Austin,2012:2990.
14 Kim G Y, Jeong A R, Kim J R,et al. Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4 thin-films grown by two-step sputtering process[J].Solar Energy Mate-rials and Solar Cells,2014,127:129.
15 Sun L, He J, Chen Y, et al. Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target[J].Journal of Crystal Growth,2012,361:147.
16 Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 43)[J].Progress in Photovoltaics,2014,22(1):1.
17 Fairbrother A, Fontané X, Izquierdo R V, et al. Single-step sulfo-selenization method to synthesize Cu2ZnSn(SySe1-y)4 absorbers from metallic stack precursors[J].ChemPhysChem,2013,14(9):1836.
18 Schurr R, Hlzing A, Jost S, et al. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors[J].Thin Solid Films,2009,517(7):2465.
19 Zhong J, Xia Z, Luo M,et al. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells[J].Scientific Reports,2014,4:6288.
20 Yin X S, Tang C H, Sun L F, et al. Study on phase formation me-chanism of non-and near-stoichiometric CZTSSe film prepared by selenization of Cu-Sn-Zn-S precursors[J].Chemistry of Materials,2014,26(6):2005.
21 Li J B, Chawla V, Clemens B M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy[J].Advanced Materials,2012,24(6):720.
22 Li J W, Mitzi D B, Shenoy V B. et al. Structure and electronic pro-perties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4[J].ACS Nano,2011,5(11):8613.23 Winkler M T, Wang W, Gunawan O, et al.Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells[J].Energy & Environmental Science,2014,7:1029.
24 Grossberg M, Krustok J, Raudoja J, et al. Photoluminescence and Raman study of Cu2ZnSn(SexS1-x)4 monograins for photovoltaic applications[J].Thin Solid Films,2011,519(21):7403.
25 Redinger A, Hones K, Fontane X, et al. Detection of a ZnSe secon-dary phase in coevaporated Cu2ZnSnSe4 thin films[J].Applied Phy-sics Letters,2011,98(10):101907.
26 Fernandes P A, Salome P M P, Cunha A F, et al. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering[J].Journal of Alloys and Compounds,2011,509(28):7600.
27 Mitzi D B, Gunawan O, Todorov T K, et al. The path towards a high-performance solution-processed kesterite solar cell[J].Solar Energy Materials and Solar Cells,2011,95(6):1421.
[1] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[2] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[3] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[4] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[5] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[6] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[7] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[8] 林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
[9] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[10] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[11] 刘武, 鲁金涛, 黄锦阳, 党莹樱, 赵新宝, 赵麦群, 袁勇. 模拟烟灰/气腐蚀对Super304H钢高温持久性能的影响[J]. 材料导报, 2018, 32(16): 2787-2792.
[12] 牛荻涛, 吕瑶, 刘西光. 混凝土硫化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(23): 163-170.
[13] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[14] 刘雨生, 刘雯, 张淑媛, 杨富华, 王晓东. 陷光结构在GaAs薄膜太阳电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(11): 11-19.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed