Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22090279-7    https://doi.org/10.11896/cldb.22090279
  无机非金属及其复合材料 |
CuS/CQDs/g-C3N4复合材料的合成及光催化性能
于巧玲1,2, 刘成宝1,2,3,*, 金涛1,2, 陈丰1,2,3, 钱君超1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
4 江苏省陶瓷研究所有限公司,江苏 宜兴 214221
5 苏州市环境科学研究所,江苏 苏州 215007
Synthesis and Photocatalytic Properties of CuS/CQDs/g-C3N4
YU Qiaoling1,2, LIU Chengbao1,2,3,*, JIN Tao1,2, CHEN Feng1,2,3, QIAN Junchao1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
4 Jiangsu Province Ceramics Research Institute Co., Ltd., Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 11710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以三水合硝酸铜(Cu(NO3)2·3H2O)、硫脲(CH4N2S)和柠檬汁为原料,基于水热法获得碳量子点(Carbon quantum dots,CQDs),采用超声震荡法成功合成了CuS/CQDs/g-C3N4三相复合光催化材料,构建了p-n型异质结。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)、氮气吸附-脱附测试(BET)和紫外-可见光漫反射光谱(UV-Vis DRS)等方法对材料的晶体结构、微观形貌和孔结构进行了详细表征。结果表明:三相复合材料界面结构构建良好,纯度高,各相分布均匀。光催化降解实验中,当CuS的含量为10%(质量分数)时,CuS/CQDs/g-C3N4复合材料的光催化降解效果达到最佳(72.1%)。复合材料在经过四次循环降解RhB后,其光催化降解效率仍然保持在65.2%。光催化实验结果表明,·O2-自由基是光催化降解产生的主要因素,h+自由基的作用次之。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于巧玲
刘成宝
金涛
陈丰
钱君超
邱永斌
孟宪荣
陈志刚
关键词:  石墨相氮化碳  碳量子点  过渡金属硫化物  异质结  光催化性能    
Abstract: CQDs (Carbon quantum dots) were obtained by hydrothermal method with lemon juice as the carbon source. CuS/CQDs/g-C3N4 was synthesized using copper trihydrate nitrate (Cu(NO3)2·3H2O), thiourea(CH4N2S) and lemon juice as starting materials via ultrasonic shock method. CuS/CQDs/g-C3N4 three-phase composite photocatalyst with p-n-type heterojunction structure was obtained successfully. The structure and morphology of the material were analyzed by various methods, such as XRD, SEM, TEM, XPS, PL, BET and UV-Vis. The results showed that the interface structure is well constructed with high purity and uniform distribution. In the photocatalytic degradation experiment, the best photocatalytic degradation of the CuS/CQDs/g-C3N4 composite was achieved at approximately 72.1% when the CuS content was 10wt%. After the RhB degradation in 4 cycles, the photocatalytic degradation efficiency of the composite material was not significantly reduced, and it still remained at 65.2%. Finally, it is clear that ·O2-radical is the main factor in photocatalytic degradation, and h+ radical is the second factor.
Key words:  graphitic carbon nitride    carbon quantum dots    transition metal sulfide    heterojunction    photocatalytic property
发布日期:  2024-06-25
ZTFLH:  TB333  
基金资助: 江苏省自然科学基金(BK20180103;BK20180971);苏州市科技发展计划项目(SS202036)
通讯作者:  *刘成宝,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。2004年本科毕业于江苏大学无机非金属材料工程专业,2007年获江苏大学材料学专业工学硕士学位,2010年获江苏大学材料学专业工学博士学位。2018年在美国罗格斯大学材料科学与工程系担任为期一年的访问学者。2016年8月被遴选为江苏省第五期“333高层次人才培养工程”中青年学术技术带头人培养对象。主要从事二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价研究。已在Ceramics International、Journalof Alloys and Compounds、Journal of Rare Earths等国内外重要期刊发表学术论文110余篇,其中SCI收录80余篇;申请国家发明专利18项,其中已获授权13项。Lcb@mail.usts.edu.cn   
作者简介:  于巧玲,2021年毕业于宿州学院,获得工学学士学位,现为苏州科技大学材料科学与工程学院硕士研究生,在刘成宝副教授的指导下进行研究。目前主要研究领域为环境和能源材料的设计合成及性能评价。
引用本文:    
于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
YU Qiaoling, LIU Chengbao, JIN Tao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Synthesis and Photocatalytic Properties of CuS/CQDs/g-C3N4. Materials Reports, 2024, 38(11): 22090279-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090279  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22090279
1 Sun Z X, Wang H Q, Wu Z B, et al. Catalysis Today, 2018, 300, 160.
2 Lee H, Park I S, Bang H J, et al. Applied Surface Science, 2019, 471, 893.
3 Lee D E, Devthade V, Moru S, et al. Journal of Alloys and Compounds, 2022, 902, 163612.
4 Tang F, Liu C B, Chen F, et al. Ceramics International, 2022, 48, 28614, .
5 Shang Y Y, Chen X, Liu W W, et al. Applied Catalysis B: Environmental, 2017, 204, 78.
6 Fang Y X, Wang X C. Chemical Communications, 2018, 54 (45), 5674.
7 Savateev A, Ghosh I, König B, et al. Angewandte Chemie International Edition, 2018, 57 (49), 15936.
8 Jin T, Liu C B, Chen F, et al. Carbon Letters, 2022, 32(6), 1451.
9 Zhang Z F, Tang L, Sun L, et al. Fine Chemical Industry, 2019, 36(2), 237.
10 Cheng F Y, Yin H, Xiang Q J, et al. Applied Surface Science, 2017, 391, 432.
11 Zhu D H, Nai X Y, Lan S J, et al. Applied Surface Science, 2016, 390, 25.
12 Wang F, Zeng Q R, Tang J P, et al. Journal of Nanoscience and Nanotechnology, 2020, 20, 5896.
13 Cai Z L, Zhou Y M, Ma S S, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 168.
14 Yu J, Zhang J, Liu S. Journal of Physical Chemistry C, 2010, 114(32), 13642.
15 He K L, Xie J, Luo X Y, et al. Chinese Journal of Catalysis, 2017, 38, 240.
16 He K, Xie J, Liu Z Q, et al. Journal of Materials Chemistry A, 2018, 6, 13110.
17 Cheng F Y, Yin H, Xiang Q J, et al. Applied Surface Science, 2017, 391, 432.
18 Zhang Z Y, Huang J D, Zhang M Y, et al. Applied Catalysis B: Environmental, 2015, 163, 298.
19 Zou J, Wu S L, Liu Y, et al. Carbon, 2018, 130, 652.
20 Zou J, Deng W M, Jiang J Z, et al. Electrochimica Acta, 2020, 354, 136658.
21 Zou J, Mao D P, Li N, et al. Applied Surface Science, 2019, 506, 144672.
22 Xu J, Wang Y, Zhu Y. Catalysis Communications, 2013, 29(33), 10566.
23 Xu G, Xu Y, Zhou Z, et al. Diamond and Related Materials, 2019, 97, 107461.
24 Duan J H, Song X K, Zhao H, et al. Optical Materials, 2020, 101, 109761.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[3] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[4] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[5] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[6] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[7] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[8] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[9] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[10] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[11] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[12] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[13] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[14] 邓康宁, 肖清泉, 陈豪, 王傲霜, 王江翔. 日盲紫外硅/金刚石异质结光电二极管的结构设计和仿真[J]. 材料导报, 2023, 37(20): 22030226-6.
[15] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed