Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21070275-7    https://doi.org/10.11896/cldb.21070275
  无机非金属及其复合材料 |
CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究
曹一达1,2, 刘成宝1,2,3,*, 陈丰1,2,3, 钱君超1,2,3, 许小静4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室, 江苏 苏州 215009
2 苏州科技大学材料科学与工程学院, 江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
4 江苏省陶瓷研究所有限公司,江苏 宜兴 214221
5 苏州市环境科学研究所, 江苏 苏州 215007
Preparation of CeO2/BiOI/g-C3N4 Composite and Its Photocatalytic Degradation Property for RhB Under Visible Light
CAO Yida1,2, LIU Chengbao1,2,3,*, CHEN Feng1,2,3, QIAN Junchao1,2,3, XU Xiaojing4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu,China
4 Jiangsu Province Ceramics Research Institute Co., Ltd., Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 11716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过溶剂热和超声搅拌合成了CeO2/BiOI/g-C3N4三相复合材料。利用XRD、SEM、TEM和UV-Vis DRS等手段对该材料的成分、结构和光学性质进行表征。制备的CeO2/BiOI/g-C3N4三相复合材料界面结构构建良好,光响应性能好,各相分布均匀且结晶程度较高。光催化降解实验表明,在可见光(λ>420 nm)下,CeO2/BiOI/g-C3N4(Ce、Bi物质的量比为2∶1,g-C3N4质量分数为5%)三相复合材料光催化降解RhB的效率达到71%,是纯相CeO2的7倍、纯相BiOI的10倍。同时光催化重复实验结果表明,光催化材料显示出良好的稳定性,经四次循环后,光催化效率基本无降低。最后探讨了复合材料的光催化机理,明确光催化实验中真正的活性物质为空穴及超氧自由基。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹一达
刘成宝
陈丰
钱君超
许小静
孟宪荣
陈志刚
关键词:  碘氧化铋  复合光催化材料  构筑异质结  光催化降解    
Abstract: The CeO2/BiOI/g-C3N4 composites were synthesized by solvothermal and ultrasonic stirring method. The composition, microstructure and optical properties of the material were characterized by XRD, SEM, TEM and UV-Vis DRS. The obtained CeO2/BiOI/g-C3N4 has tighter interface structure, good light response property, uniform phase distribution and high degree of crystallization. Photocatalytic degradation experiments showed that under visible light(λ>420 nm), the photocatalytic degradation efficiency of CeO2/BiOI/g-C3N4 (Ce/Bi molar ratio was 2∶1, and g-C3N4 mass fraction was 5%) for RhB was 71%, which was 7 times that of pure CeO2 and 10 times that of pure BiOI. The sample remained high photocatalytic efficiency after four cycles, revealing its good circulatory stability. Finally, the photocatalytic mechanism of the composites was introduced. It was clear that the real active substances in the photocatalytic experiment were holes and superoxide radicals.
Key words:  BiOI    composite photocatalytic material    heterojunction construction    photocatalytic degradation
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TB333  
基金资助: 江苏省自然科学基金(BK20180103; BK20180971);苏州市科技发展计划项目(民生科技—关键技术应用研究)(SS202036)
通讯作者:  *Lcb@mail.usts.edu.cn,刘成宝,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。2004年本科毕业于江苏大学无机非金属材料工程专业,2007年获江苏大学材料学专业工学硕士学位,2010年获江苏大学材料学专业工学博士学位。2018年在美国罗格斯大学材料科学与工程系担任为期一年的访问学者。2016年8月被遴选为江苏省第五期“333高层次人才培养工程”中青年学术技术带头人培养对象。主要从事二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价。已在Journal of Porous Materials、Journal of Alloys and Compounds、Journal of Rare Earths等国内外重要期刊发表学术论文近百篇,其中SCI收录70余篇;申请国家发明专利13项,其中已获授权11项。   
作者简介:  曹一达,2020年6月毕业于盐城工学院,获得工学学士学位。现为苏州科技大学化学与生命科学学院硕士研究生,在刘成宝副教授的指导下进行研究。目前主要研究领域为环境功能材料的结构设计及其性能评价。
引用本文:    
曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
CAO Yida, LIU Chengbao, CHEN Feng, QIAN Junchao, XU Xiaojing, MENG Xianrong, CHEN Zhigang. Preparation of CeO2/BiOI/g-C3N4 Composite and Its Photocatalytic Degradation Property for RhB Under Visible Light. Materials Reports, 2023, 37(3): 21070275-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070275  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21070275
1 Hood R D, Jones C L,Ranganathan S. Teratology, 1989, 40, 143.
2 Xu X L, Zhu J J, Zhao Z. Journal of Shenyang Normal University (Natural Science edition), 2020, 38(1), 18(in Chinese).
许雪莲,朱君江,赵震.沈阳师范大学学报(自然科学版), 2020, 38(1),18.
3 Sweatman T W, Seshadri R, Israel M. Cancer Chemotherapy and Pharmacology, 1990, 27, 205.
4 Xu G, Li M, Wang Y, et al. Science of the Total Environment, 2019, 678, 173.
5 Wang L, Zhang H G, Guo C Y, et al. Journal of Fuel Chemistry and Technology, 2019, 47(7), 834.
6 Qi K Z, Liu N W, Cui N, et al. Journal of Shenyang Normal University (Natural Science edition), 2021, 39(2), 103(in Chinese).
戚克振,刘乃文,崔楠,等.沈阳师范大学学报(自然科学版), 2021, 39(2),103.
7 Li W, Ma Q, Wang X, et al. Applied Surface Science, 2019, 494, 275.
8 Wang Y, Tan G, Liu T, et al. Applied Catalysis B: Environmental, 2018, 234, 37.
9 Ye L, Jin X, Ji X, et al. Chemical Engineering Journal, 2016, 291, 39.
10 Tian D M, Wang Z Q, Wang J Q. Journal of Shenyang Normal University (Natural Science Edition), 2021, 39(2), 98(in Chinese).
田冬梅,王梓倩,王俊清.沈阳师范大学学报(自然科学版), 2021 ,39(2),98.
11 He R, Cheng K, Wei Z, et al. Applied Surface Science, 2019, 465, 964.
12 Alizadeh T, Nayeri S, Habibi Yangjeh A. Sensors and Actuators B: Che-mical, 2019, 279, 245.
13 Yan C, Zhang Z, Wang W, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 18343.
14 Huang H, Liu C, Ou H,et al. Applied Surface Science, 2019, 470, 1101.
15 Hu L, Liao Y, Xia D, et al. Chemical Engineering Journal, 2020, 385, 123824.
16 Feng Z, Zeng L, Zhang Q, et al. Journal of Environmetal Sciences (China), 2020, 87, 149.
17 Hu X, Wang G, Wang J, et al. Applied Surface Science, 2020, 511, 145499.
18 Yan C, Zhang Z, Wang W, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 18343.
19 An H, Lin B, Xue C, et al. Chinese Journal of Catalysis, 2018, 39(4), 654.
20 Mafa P J, Kuvarega A T, Mamba B B, et al. Applied Surface Science, 2019, 483, 506.
21 He R, Cheng K, Wei Z, et al. Applied Surface Science, 2019, 465, 964.
22 Gupta R, BOoruah B, Modak J M, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 108.
23 Hou J, Jiang K, Shen M, et al. Scientific Reports, 2017, 7, 11665.
24 Naidi S N, Khan F, Tan A L, et al. Biomaterial Science, 2021, 9, 4854.
25 Jiang D, Chen L, Zhu J, et al. Dalton Trans, 2013, 42, 15726.
26 Dai K, Lu L, Liang C, et al. Dalton Trans, 2015, 44, 7903.
27 Zou W, Deng B, Hu X, et al. Applied Catalysis B: Environmental, 2018, 238, 111.
28 Gong Y, Li H, Jiao C, et al. Applied Catalysis B: Environmental, 2019, 250, 63.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[3] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed