Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22030277-7    https://doi.org/10.11896/cldb.22030277
  无机非金属及其复合材料 |
g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能
王宗乾1,2, 申佳锟1, 李禹1, 李长龙1,2, 王鹏1,2,*
1 安徽工程大学纺织服装学院,安徽 芜湖 241000
2 安徽省纺织工程技术研究中心,安徽 芜湖 241000
Preparation of g-C3N4/MXene/Ag3PO4 Heterostructure and Catalytic Property
WANG Zongqian1,2, SHEN Jiakun1, LI Yu1, LI Changlong1,2, WANG Peng1,2,*
1 School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
2 Anhui Engineering and Technology Research Center of Textile, Wuhu 241000, Anhui, China
下载:  全 文 ( PDF ) ( 14198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善g-C3N4的光催化性能,利用静电组装的方法制备g-C3N4/MXene/Ag3PO4异质结光催化剂,采用TEM、FTIR、XRD、XPS和DRS等方法对其进行了表征。随后将g-C3N4/MXene/Ag3PO4催化剂应用于活性红195的氧化降解反应中,考察了催化剂用量、pH值以及初始染料浓度等因素对催化性能的影响,并对催化机理进行了研究。结果表明,通过静电组装的方法能够成功制备具有片状结构的g-C3N4/MXene/Ag3PO4催化剂;异质结的构建能够显著提高g-C3N4的催化活性,60 min时,活性红195的降解率由74.92%提高到93.64%;降低初始染料浓度、增加催化剂用量均能加快染料氧化降解反应的进行;酸性和碱性条件下,催化剂对染料的催化氧化性能均高于中性条件;五次重复实验后催化剂对活性红195依然具有较高的降解率(80.11%),且反应前后催化剂的结构没有发生改变;反应过程中染料的偶氮键共轭体系和芳香环结构均遭到破坏,而且·O2-是染料降解反应中的主要活性物质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宗乾
申佳锟
李禹
李长龙
王鹏
关键词:  异质结  催化剂  有机染料  光催化降解  机理    
Abstract: In order to improve the photocatalytic performance of g-C3N4, g-C3N4/MXene/Ag3PO4 heterojunction photocatalyst were prepared via a self-assembly procedure with the help of TEM, FTIR, XRD, XPS, and DRS. And then the effects of catalyst dosage, pH value and initial dye concentration on the catalytic performance, and catalytic mechanism were investigated by the experiment of photocatalytic oxidative degradation of Reactive Red 195 being carried out with g-C3N4/MXene/Ag3PO4 under visible light illumination. The results showed that the g-C3N4/MXene/Ag3PO4 catalyst with sheet structure could be successfully prepared. The catalytic activity of g-C3N4 significantly was improved due to heterojunction. The degradation rate of Reactive Red 195 increased from 74.92% to 93.64% in the treatment of 60 min reaction time. Reduced the initial dye concentration and increased the amount of catalyst could accelerate the oxidative degradation of Reactive Red 195. Additionally, under acidic and alkaline conditions, the catalytic oxidation performance of the catalyst was higher than that under neutral conditions. After 5 cycles of g-C3N4/MXene/Ag3PO4, the degradation rate of Reactive Red 195 remained high (80.11%), and the structure of the catalyst did not change before and after usage. This probably due to the azo bond and aromatic ring structure of Reactive Red 195 were destroyed, and ·O2- participated in the reaction as the main active substance, during the reaction.
Key words:  heterojunction    catalyst    organic dye    photocatalytic degradation    mechanism
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TQ032.4  
基金资助: 安徽省重点研发项目(2022a05020069;2023t07020001);安徽高校自然科学研究重点项目(KJ2020A0354);安徽省纺织工程技术研究中心开放基金(2021AETKL09); 安徽省博士后科研项目(2021A486);安徽省高校中青年拔尖人才项目(gxbjZD2020075);安徽省学术和技术带头人后备人选项目(2020H218);安徽工程大学校级科研项目(Xjky2022079)
通讯作者:  * 王鹏,2013年6月、2019年6月分别于河北科技大学和天津工业大学获得纺织科学与工程专业学士和博士学位,2020年1月至今在安徽工程大学纺织服装学院担任教学研究人员。研究领域包括纺织化学与生态学、环境催化与净化材料、纺织工业废水处理技术以及室内空气污染控制技术等。发表论文20余篇,包括Cellulose、Journal of Cleaner Production、Coloration Technology、Industrial Crops and Products等。wangpeng@ahpu.edu.cn   
作者简介:  王宗乾,2004年6月、2016年3月于浙江理工大学获得工学学士学位和硕士学位。现为安徽工程大学纺织服装学院教授。目前主要研究领域为功能化纤维的结构调控与成型技术、先进印染加工技术与理论和生物源纤维清洁生产与多尺度利用。发表高水平学术论文50余篇,授权发明专利20余项。
引用本文:    
王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
WANG Zongqian, SHEN Jiakun, LI Yu, LI Changlong, WANG Peng. Preparation of g-C3N4/MXene/Ag3PO4 Heterostructure and Catalytic Property. Materials Reports, 2023, 37(22): 22030277-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030277  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22030277
1 Ma D, Liu W Y, Chen Q, et al. Journal of Solid State Chemistry, 2021, 293, 121791.
2 Cai T, Wang L L, Liu Y T, et al. Applied Catalysis B: Environmental, 2018, 239, 545.
3 Chen C R, Zeng H Y, Yi M Y, et al. Applied Catalysis B: Environmental, 2019, 252, 47.
4 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76.
5 Jiang D L, Ma W X, Xiao P, et al. Journal of Colloid and Interface Science, 2018, 512, 693.
6 Jia J K, Huang W X, Feng C S, et al. Journal of Alloys and Compounds, 2019, 790, 616.
7 Jiang L B, Yuan X Z, Zeng G M, et al. Applied Catalysis B: Environmental, 2018, 221, 715.
8 Qin D D, Lu W Y, Wang X Y, et al. ACS Applied Materials & Interfaces, 2016, 8(39), 25962.
9 Che Y P, Liu Q Q, Lu B X, et al. Scientific Reports, 2020, 10(1), 721.
10 Zhang J S, Zhang M W, Lin S, et al. Journal of Catalysis, 2014, 310, 24.
11 Zheng Y, Lin L H, Wang B, et al. Angewandte Chemie-International Edition, 2015, 54(44), 12868.
12 Patnaik S, Martha S, Acharya S, et al. Inorganic Chemistry Frontiers, 2016, 3(3), 336.
13 Wu C Z, Xue S Y, Qin Z J, et al. Applied Catalysis B: Environmental, 2021, 282, 119557.
14 Song X H, Li X, Zhang X Y, et al. Applied Catalysis B: Environmental, 2020, 268, 118736.
15 Lin Z H, Yu B, Huang J G. Langmuir, 2020, 36(21), 5967.
16 Geng Y X, Chen D Y, Li N J, et al. Applied Catalysis B: Environmental, 2021, 280, 119409.
17 Fu N, Jin Z L, Wu Y Q, et al. Journal of Physical Chemistry C, 2011, 115(17), 8586.
18 Peng J H, Chen X Z, Ong W J, et al. Chem, 2019, 5(1), 18.
19 Hu S Z, Wang F, Li Z, et al. Materials Reports, 2021, 35(8), 08011.
胡绍争, 王菲, 李政, 等. 材料导报, 2021, 35(8), 08011.
20 Shi Y H, Li J S, Wan D J, et al. Science of the Total Environment, 2020, 749, 142313.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[3] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[4] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[5] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[6] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[7] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[8] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[9] 黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
[10] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[11] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[12] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[13] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[14] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[15] 王育华, 冯鹏, 丁松松, 马西麟, 曹君龙, 张泓喆, 李根, 郭海洁. 长余辉材料的设计及机理研究进展[J]. 材料导报, 2023, 37(3): 22110279-13.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed