Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21070229-8    https://doi.org/10.11896/cldb.21070229
  高分子与聚合物基复合材料 |
有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响
余裕森1,2, 黎氏琼春1,2,*, 王天1,2, 张利波1,2
1 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
2 昆明理工大学冶金与能源工程学院,昆明 650093
Effect of Organic Acids on Ultrasonication-assisted Removal of Harmful Metals from Spent FCC Catalysts
YU Yusen1,2, LE Thiquynhxuan1,2,*, WANG Tian1,2, ZHANG Libo1,2
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
2 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 15268KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有害金属Fe、V、Ni是石油流化催化裂化(FCC)催化剂中毒的根源,导致FCC催化剂的活性降低。针对现有废FCC催化剂再生工艺存在有害金属脱除率低、废剂颗粒的微观形貌和分子筛骨架易被破坏、废剂无法回用等问题,以有机酸为浸出剂,提出超声协同有机酸脱除废催化剂中有害金属的强化处理工艺。本研究以保留废FCC催化剂的球状颗粒结构和Y型分子筛骨架结构为前提,研究在超声作用下氧化预处理、有机酸种类、反应温度、时间以及超声功率对废FCC催化剂中有害金属脱除的影响。实验结果表明,在超声作用下,不同有机酸对有害金属的脱除效果从弱到强的顺序为乙酸、EDTA、草酸+乙酸、草酸,而废剂微观结构被破坏的程度也增加。在草酸和乙酸的混合液为浸出剂、超声功率为250 W、浸出温度为70 ℃、浸出时间为30 min的条件下,V、Fe、Ni脱除率分别高达40.7%、27.5%和17.2%,且浸出后的FCC催化剂球状结构和分子筛骨架结构完整。与常规浸出相比,超声浸出对有害金属的脱除起到强化作用,V、Fe、Ni的浸出率分别提高了19.9%、13.1%和7.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余裕森
黎氏琼春
王天
张利波
关键词:  废FCC催化剂  有机酸  有害金属  超声  脱除    
Abstract: The main causes of poisoning of fluid catalytic cracking (FCC) catalysts in the petroleum industry are harmful metals, such as Fe, V and Ni, which reduce the activity of the FCC catalysts. The existing regeneration processes of spent FCC catalysts have problems, such as low metal removal rate, incomplete microstructure, and damaged zeolite Y framework, resulting in the inability of spent FCC catalysts to be reused. An effective method combining organic acids as a leaching agent and ultrasonic radiation was developed in this study to improve the removal effect of harmful metals in spent FCC catalyst without destroying the zeolite Y framework and particle microstructure. The effects of oxidation pretreatment, organic acid type, leaching temperature, leaching time, and ultrasonic power on the zeolite Y framework, particle microstructure, and harmful metal removal were investigated. The experimental results show that the removal effects of different organic acids on harmful metals under ultrasound are in the order from weak to strong as follows: acetic acid, EDTA, oxalic acid + acetic acid, oxalic acid, and the destruction of the microstructure of the spent catalyst particle increases in this order. After leaching in a mixture of oxalic acid and acetic acid for 30 min at 70 ℃ with an ultrasonic power of 250 W, a regenerated catalyst with a complete particle structure and zeolite Y framework was obtained, with the removal rates of V, Fe and Ni 40.7%, 27.5% and 17.2%, respectively. Compared to conventional leaching, ultrasonic leaching exhibited a strengthening effect on removing harmful metals, and the leaching rates of V, Fe and Ni increased by 19.9%, 13.1% and 7.7%, respectively, during the ultrasonic leaching process.
Key words:  spent FCC catalysts    organic acid    harmful metal    ultrasonication    removal
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  X742  
  TB559  
基金资助: 云南省科技厅“智汇云南”计划(202103AM140006);云南省基础研究计划项目(202201AU070088;202101BE070001-023);昆明理工大学高层次人才科研平台建设资助(141120200029);昆明理工大学分析测试基金(2020T20204104)
通讯作者:  *黎氏琼春,昆明理工大学副教授。2012年毕业于昆明理工大学,获学士学位;2017年毕业于昆明理工大学,获博士学位。2019年在昆明理工大学完成了博士后科研工作。2020年至今于昆明理工大学冶金与能源工程学院就职。主要从事二次资源利用、超声冶金等方面研究。以第一或通信作者已发表学术论文30余篇,已获授权国家发明专利4项。quynhxuanlt@kust.edu.cn   
作者简介:  余裕森,2020年毕业于江西理工大学,获工学学士学位,现为昆明理工大学硕士研究生,在黎氏琼春副教授的指导下,从事废FCC催化剂回收再利用研究。
引用本文:    
余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
YU Yusen, LE Thiquynhxuan, WANG Tian, ZHANG Libo. Effect of Organic Acids on Ultrasonication-assisted Removal of Harmful Metals from Spent FCC Catalysts. Materials Reports, 2023, 37(8): 21070229-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070229  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21070229
1 Wang J Y, Huang X W, Wang L S, et al. Hydrometallurgy, 2017, 171, 312.
2 Vogt E T C , Weckhuysen B M. Chemical Society Reviews, 2015, 44, 7342.
3 Bin D H, Zhu X M, Fu H H, et al. Journal of Environmental Enginee-ring Technology, 2019, 9(4), 453 (in Chinese).
宾灯辉, 朱雪梅, 傅海辉, 等. 环境工程技术学报, 2019, 9(4), 453.
4 National Hazardous Waste List (2021 edition). Communiqué of the State Council of the People's Republic of China, 2021(4), 18 (in Chinese).
国家危险废物名录(2021年版). 中华人民共和国国务院公报, 2021(4), 18.
5 Zhao Z X, Qiu Z F, Yang J, et al. Hydrometallurgy, 2017, 167, 183.
6 Huang Y Y, Wang L L, Chen X P, et al. Guangxi Sciences, 2015, 22(1), 65 (in Chinese).
黄莹莹, 王琳琳, 陈小鹏, 等. 广西科学, 2015, 22(1), 65.
7 Ferella F, Innocenzi V, Maggiore F. Resources Conservation & Recycling, 2016, 108, 10.
8 Velázquez S, Monzó J, Borrachero M V, et al. Thermochimica Acta, 2016, 632, 29.
9 Qi L. Adsorption of bisphnol compounds in aqueous solution by spent FCC catalyst. Master's Thesis, Liaoning Shihua University, China, 2019 (in Chinese).
戚霖. 废FCC催化剂吸附水溶液中的双酚类化合物. 硕士学位论文, 辽宁石油化工大学, 2019.
10 Zhang J Q. Reactivation of spent catalytic cracking catalysts. Master's Thesis, China University of Petroleum (EastChina), China, 2018 (in Chinese).
张景琪. 催化裂化废催化剂的复活. 硕士学位论文, 中国石油大学(华东), 2018.
11 Liu X M, Zhang X G, Pan Z H, et al. Petroleum Processing and Petrochemicals, 2006, 37(11), 44 (in Chinese).
刘欣梅, 张新功, 潘正鸿, 等. 石油炼制与化工, 2006, 37(11), 44.
12 Li C Y, Sha Y X, Gu Y P, et al. Journal of China University of Petro-leum(Edition of Natural Science), 2005, 29(4), 115 (in Chinese).
李春义, 沙有鑫, 顾艳萍, 等. 中国石油大学学报(自然科学版), 2005, 29(4), 115.
13 Cho S I, Jung K S, Woo S I. Applied Catalysis B: Environmental, 2001, 33(3), 249.
14 Tian H. Studies on vanadium removal and rejuvenation of spent FCC catalysts.Master's Thesis, China University of Petroleum (East China), China, 2005 (in Chinese).
田华. 废FCC催化剂脱钒复活研究. 硕士学位论文, 中国石油大学(华东), 2005.
15 Le T Q X, Wang Q, Ravindra A V, et al. Journal of Alloys and Compounds, 2019, 776, 437.
16 Chang J, Zhang E D, Zhang L B, et al. Ultrasonics Sonochemistry, 2017, 34, 222.
17 Liao T Q, Xi Y H, Zhang L B, et al. Journal of Hazardous Materials, 2021, 408, 124464.
18 Zhang C, Liu J H, Yang X B, et al. Journal of Functional Materials, 2015, 46(20), 20063 (in Chinese).
张琛, 刘建华, 杨晓博, 等. 功能材料, 2015, 46(20), 20063.
19 Oza R, Shah N, Patel S. Journal of Chemical Technology & Biotechnology, 2011, 86(10), 1276.
20 Yamashita T, Hayes P. Applied Surface Science, 2008, 254(8), 2441.
21 Chen C M, Yu J, Yoza B A, et al. Journal of Environmental Management, 2015, 152, 58.
22 John F M, William F S, Peter E S, et al. Handbook of X-ray photoelectron spectroscopy, physical electronics, MN, America, 1992, pp. 230.
23 Chen J Y, Liu Z Q, Chen H J, et al. Materials Research and Application, 2007, 1(2), 136 (in Chinese).
陈敬阳, 刘志强, 陈怀杰, 等. 材料研究与应用, 2007, 1(2), 136.
24 Beuther H, Flinn R A. Industrial & Engineering Chemistry Product Research & Development, 1963, 2(1), 53.
25 Goel S, Gautam A. Hydrometallurgy, 2010, 101(3-4), 120.
26 Wu Y, Zhang G J, Zhang X G, et al. Petroleum Refinery Engineering, 2011, 41(11), 32 (in Chinese).
吴聿, 张国静, 张新功,等. 炼油技术与工程, 2011, 41(11), 32.
27 Yan J W, Pan D A, Li B. The Chinese Journal of Process Engineering, 2020, 20(11), 1241 (in Chinese).
焉杰文,潘德安,李彬. 过程工程学报, 2020, 20(11), 1241.
28 Jiang F, Chen Y Q, Ju S H, et al. Ultrasonics Sonochemistry, 2018, 48, 88.
29 Xiao J, Yuan J, Tian Z L, et al. Ultrasonics Sonochemistry, 2018, 40, 21.
30 Xie F C, Li H Y, Ma Y, et al. Journal of Hazardous Materials, 2009, 170(1), 430.
31 Yang J H, He L H, Liu X H, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(4), 775.
[1] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[2] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[5] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[6] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[7] 余超, 季昌国, 张鹏鲲, 王凯, 王静, 刘畅. 基于相控阵超声的电力线夹检测技术研究[J]. 材料导报, 2022, 36(Z1): 22030019-6.
[8] 肖强, 王嘉琪, 靳龙平. 磁流变抛光关键技术及工艺研究进展[J]. 材料导报, 2022, 36(7): 20080279-10.
[9] 李美艳, 赖家美, 莫明智, 罗志强, 黄志超. 缝合复合材料层板面内边缘冲击及冲击后压缩实验[J]. 材料导报, 2022, 36(23): 21050254-6.
[10] 禹岳, 王喆, 姚沛衡, 姚文胜, 杨辰龙. 复合材料液体成型树脂流动前锋监测技术研究进展[J]. 材料导报, 2022, 36(23): 21030191-8.
[11] 任智翔, 杨康, 李肽脂, 迂晨, 詹华, 吴锋, 李辉. 超声波辅助氧化改性钙基吸收剂的制备及性能研究[J]. 材料导报, 2022, 36(2): 21010211-5.
[12] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[13] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[14] 杨现臣, 李新梅. 摩擦接触表面温度测量技术研究进展[J]. 材料导报, 2022, 36(12): 20080251-9.
[15] 陈猛, 颜鑫, 陈建淞, 孙影杰. 回收轮胎聚合物纤维混凝土高温损伤超声特性研究[J]. 材料导报, 2022, 36(11): 21030318-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed