Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21030195-8    https://doi.org/10.11896/cldb.21030195
  金属与金属基复合材料 |
基于超声红外热波技术的再制造零件裂纹检测研究现状
温飞娟1, 温奇飞2, 龙樟1,*, 蒲京辰1, 邓荣1
1 西南石油大学工程学院,四川 南充 637000
2 南充市特种设备监督检验所,四川 南充 637000
Research Status of Ultrasonic Infrared Thermal Wave Technology in Crack Detection for Remanufactured Parts
WEN Feijuan1, WEN Qifei2, LONG Zhang1,*, PU Jingchen1, DENG Rong1
1 School of Engineering, Southwest Petroleum University, Nanchong 637000, Sichuan, China
2 Nanchong Special Equipment Supervision and Inspection Institute, Nanchong 637000, Sichuan, China
下载:  全 文 ( PDF ) ( 9932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再制造是制造的延续,再制造零件由涂覆层和已经服役过的基体组成,异质材料体系的添加以及二次服役使得再制造零件的安全面临巨大的挑战,辨识及表征再制造零件缺陷是再制造零件服役安全评价的重要难题。超声红外热波检测技术利用超声激励产生能量转化和热传导原理,通过采集材料表面和近表面的红外热图对缺陷结构进行反演表征,是热学无损检测技术中非常重要的研究方向。然而,由于涂层的存在,将红外热波技术用于再制造零件裂纹的评价表征也面临着新的理论难题。基于此,本文系统分析了再制造零件的特点,总结了超声红外热波的检测机理,详细综述了低频超声振动能量与裂纹缺陷耦合生热机制研究现状,其中,摩擦生热机制得到了较多的理论支持和试验验证。同时,概述了内部热异常信号向表面瞬态传导的规律。通过对多种超声红外热波的辨识理论的应用,可实现表面异常热波的辨识及准确表征的协同提升。最后,对表面裂纹、界面裂纹及基体裂纹检测的研究现状进行概述,并总结了超声红外热波技术在再制造零件缺陷检测方面的应用和亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温飞娟
温奇飞
龙樟
蒲京辰
邓荣
关键词:  超声红外热波技术  再制造  无损检测  裂纹生热  热图重构    
Abstract: Remanufacturing is a continuation of manufacturing, and the remanufacturing part consists of a coated layer and a substrate that has already been served. The addition of heterogeneous materials and secondary servicing makes maintaining the safety of remanufactured parts a considerable challenge. Identifying and characterizing defects in remanufactured parts is thus an essential consideration for the safety evaluation of remanufactured parts. Ultrasonic infrared thermal wave technology uses ultrasonic excitation for energy conversion and heat conduction. The latter function uses infrared heat maps on the surface and near-surface of the material to inversely characterize the structure of defects, and is a very important research direction in thermal nondestructive testing (NDT) technology. However, the existence of coating layers from remanufacturing poses some theoretical problems to using infrared thermal wave technology for the evaluation and characterization of cracks in remanufactured parts. Therefore, in this paper, we systematically review the characteristics of remanufactured parts and the associated detection mechanisms that use ultrasonic infrared thermal waves. The current status of research on the coupling heat generation mechanisms of low-frequency ultrasonic vibration energy and crack defects have been reviewed in detail. Among the different mechanisms studied, the friction heat generation mechanism has received more theoretical support and experimental verification. To a lesser extent, this review considers the law of transient conduction of abnormal internal thermal signals to the surface. By applying various ultrasonic infrared thermal wave identification theories, it is possible to synergistically improve the identification and accurate characterization of abnormal surface thermal waves. The study also considers the current status of research on the detection of surface crack, interfacial crack, and substrate crack. Finally, the application of ultrasonic infrared thermal wave technology in defect detection for remanufactured parts is discussed, and the associated problems to be solved are briefly outlined.
Key words:  ultrasonic infrared thermal wave technology    remanufacturing    nondestructive testing    crack heat generation    thermal image reconstruction
发布日期:  2023-03-27
ZTFLH:  TG115  
基金资助: 南充市-西南石油大学市校科技战略合作专项(SXQHJH034;SXQHJH027);教育部2021年第一批产学合作协同育人项目(202101398047;202102500012)
通讯作者:  *龙樟,2015年6月本科毕业于西南科技大学,2018年6月毕业于重庆大学,获得机械工程硕士学位。现为西南石油大学机电学院机械电子工程专业讲师,中国人工智能学会机器人文化艺术专业委员会委员,长期从事智能制造方面的研究,发表文章10余篇,授权发明专利30余项。longzhang@swpu.edu.cn   
作者简介:  温飞娟,2015年6月本科毕业于兰州理工大学焊接技术与工程专业,2018年6月毕业于西安理工大学,获得材料工程硕士学位。现为西南石油大学新能源与材料学院焊接技术与工程专业讲师,在龙樟讲师的指导下进行智能制造方面的研究。目前主要研究领域为智能制造、无损检测。发表文章20余篇,申请专利10余项。
引用本文:    
温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
WEN Feijuan, WEN Qifei, LONG Zhang, PU Jingchen, DENG Rong. Research Status of Ultrasonic Infrared Thermal Wave Technology in Crack Detection for Remanufactured Parts. Materials Reports, 2023, 37(6): 21030195-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030195  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21030195
1 Xu B S. Engineering Sciences, 2011, 13(1), 4(in Chinese).
徐滨士. 中国工程科学, 2011, 13(1), 4.
2 Sarkar B, Ullah M, Sarkar M. Journal of Cleaner Production, 2022, 332, 129813.
3 Almeida G, Gonzalez J, Rosado L, et al. Procedia Cirp, 2013, 7(12), 359.
4 Xiao H F, Xu J W, He F, et al. Journal of University of Science and Technology Beijing, 2014, 36(6), 838(in Chinese).
肖会芳, 徐金梧, 何飞, 等. 北京科技大学学报, 2014, 36(6), 838.
5 Egbewande A, Chen W, Eadie R. Metallurgical & Materials Transactions A, 2014, 45(11), 4946.
6 Zhang H, Li S J, Wang W P. Nondestructive Testing, 2010, 32(6), 409(in Chinese).
张辉, 李树君, 王伟平. 无损检测, 2010, 32(6), 409.
7 Chen S Y, Wang H D, Xu B S, et al. Journal of Mechanical Engineering, 2014, 50(8), 23(in Chinese).
陈书赢, 王海斗, 徐滨士, 等. 机械工程学报, 2014, 50(8), 23.
8 Chen S G, Zong X M, Huang H H, et al. Nondestructive Testing, 2021, 43(1), 29(in Chinese).
陈善功, 蹤雪梅, 黄海鸿, 等. 无损检测, 2021, 43(1), 29.
9 Wu Y, Li W, Wang P. Procedia Cirp, 2015, 29(4), 758.
10 Wen F J, Dong L H, Wang H D, et al. Materials Reports B: Research Papers, 2018, 32(8), 2793(in Chinese).
温飞娟, 董丽虹, 王海斗, 等. 材料导报:研究篇, 2018, 32(8), 2793.
11 Wen F J. Study on influence interface characteristics on crack propagation behavior of remanufactured parts. Master's Thesis, Xi'an University of Technology, China, 2018(in Chinese).
温飞娟. 再制造零件界面特性对裂纹扩展行为影响的研究. 硕士学位论文, 西安理工大学, 2018.
12 Bwwilogua K, Brauer G, Dietz A, et al. CIRP Annals-Manufacturing Technology, 2009, 58(2), 608.
13 Gao Z F, Dong L H, Wang H D, et al. Materials Reports A: Review Papers, 2020, 34(5), 9158(in Chinese).
高治峰, 董丽虹, 王海斗, 等. 材料导报:综述篇, 2020, 34(5), 9158.
14 Xi X W, Su Q F, Yuan Y N, et al. Infrared Technology, 2021, 43(2), 186(in Chinese).
习小文, 苏清风, 袁雅妮, 等. 红外技术, 2021, 43(2), 186.
15 Pye C J, Adams R D. Journal of Physics D-Applied Physics, 1981, 14(14), 927.
16 Thomas R L, Favro L D, Grice K R, et al. Canadian Journal of Physics, 2011, 64(9), 1234.
17 Mignogna R B, Green R E. Ultrasonics, 1981, 19(4), 159.
18 Lu J P, Han X, Newaz G, et al. Nondestructive Testing and Evaluation, 2007, 22(2), 127.
19 Zhang S Y. Journal of Applied Acoustics, 2004, 23(5), 1(in Chinese).
张淑仪. 应用声学. 2004, 23(5), 1.
20 Chen Z J, Zhang S Y, Zheng K. Acta Physica Sinica, 2010, 59(6), 4071(in Chinese).
陈赵江, 张淑仪, 郑凯. 物理学报, 2010, 59(6), 4071.
21 Feng F Z, Min Q X, Zhang C S. Journal of Academy of Armored Force Engineering, 2013, 27(5), 81(in Chinese).
冯辅周, 闵庆旭, 张超省. 装甲兵工程学院学报, 2013, 27(5), 81.
22 Feng F Z, Zhang C S, Min Q X, et al. Infrared and Laser Engineering, 2015, 44(5), 1456(in Chinese).
冯辅周, 张超省, 闵庆旭, 等. 红外与激光工程, 2015, 44(5), 1456.
23 Feng F Z , Zhang C S , Min Q X , et al. NDT & E International, 2017, 87, 38.
24 Han X, Islam M S, Thomas R L. Journal of Applied Physics, 2006, 99(7), 074905.
25 Dong L H, Wang B Z, Wang H D, et al. Infrared Physics and Technology, 2020, 106, 103262.
26 Renshaw J, Chen J C, Holland S D, et al. NDT & E International, 2011, 44(8), 736.
27 Cao S Y, Guo X W. Nondestructive Testing, 2010, 32(10), 1(in Chinese).
曹善友, 郭兴旺. 无损检测, 2010, 32(10), 1.
28 Ma B Q, Zhou Z G. Acta Aeronautica et Astronautica Sinica, 2014, 35(1), 1(in Chinese).
马宝权, 周正干. 航空学报, 2014, 35(1), 1.
29 Almond D P, Lau S K. Applied Physics Letters, 1993, 62(25), 3369.
30 Almond D P, Pickering S G. Journal of Applied Physics, 2012, 111(9), 093510.
31 Guo X W, Vavilov V, Shiryaev V. Journal of Mechanical Engineering, 2009, 45(3), 208(in Chinese).
郭兴旺, Vavilov V, Shiryaev V. 机械工程学报, 2009, 45(3), 208.
32 Miline J M, Carter P. NDT & E International, 1988, 30(5), 333.
33 Zeng Z, Zhou J, Tao N, et al. Infrared Physics & Technology, 2012, 55(55), 200.
34 Liu J Y, Gong J L, Qin L, et al. Infrared Physics & Technology, 2013, 62(1), 136.
35 Busse G, Wu D, Karpen W. Journal of Applied Physics, 1992, 71(8), 3962.
36 Solodov I, Busse G. Applied Physics Letters, 2007, 91(25), 251910.
37 Dudzik S. International Journal of Psychophysiology, 2009, 72(1), 61.
38 Yin A J, Gao B, Tian G Y, et al. Journal of Applied Physics, 2013, 113(6), 064101.
39 Gao B, Bai L B, Tian G Y, et al. Applied Physics Letters, 2014, 104, 251902.
40 Lopez F, Ibarra-Castanedo C, Maldague X, et al. Spie Defense Security & Sensing, 2013, 8705, 238.
41 Tang Q J, Bu C W, Liu Y L, et al. Infrared Physics & Technology, 2015, 68, 173.
42 Bai L B, Gao B, Tian S L, et al. Review of Scientific Instruments, 2013, 84(10), 104901.
43 Balageas D L, Roche J M, Leroy F H, et al. Biocybernetics and Biome-dical Engineering, 2015, 35(1), 68.
44 Tang Q J, Liu J Y, Wang Y, et al. Procedia Engineering, 2011, 16, 499.
45 Netzelmann U, Muller D. NDT & E International, 2020, 116, 102323.
46 Soliman A, Brown R, Heck R J. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 607.
47 Ahmad J, Akula A, Mulaveesala R, et al. Infrared Physics & Technology, 2019, 98, 45.
48 Ahmad J, Akula A, Mulaveesala R, et al. Infrared Physics & Technology, 2020, 104, 103.
49 Vavilov V P. NDT & E International, 2015, 71, 23.
50 Pawar S S, Vavilov V P. International Journal of Heat and Mass Transfer, 2016, 94, 56.
51 Wei J C, Wang F, Liu J Y, et al. Composite Structures, 2019, 226, 111201.
52 Sun D Q, Roth S, Michael J B. International Journal of Computer Vision, 2014, 106(2), 115.
53 Chen X, Yin C B, Xu M Y, et al. Hot Working Technology, 2020, 49(12), 66(in Chinese).
陈曦, 殷晨波, 许明阳, 等. 热加工工艺, 2020, 49(12), 66.
54 Guo W, Dong L H, Wang H D, et al. Surface Technology, 2019, 48(12), 369(in Chinese).
郭伟, 董丽虹, 王海斗, 等. 表面技术, 2019, 48(12), 369.
55 Yuan Y N , Su Q F, Xi X W, et al. Journal of Nanchang Hangkong University(Natural Sciences), 2020, 34(3), 94(in Chinese).
袁雅妮, 苏清风, 习小文, 等. 南昌航空大学学报(自然科学版), 2020, 34(3), 94.
56 Liu Y L, Zhao G J, Gao S S, et al. Journal of Heilongjiang University of Science and Technology, 2018, 28(5), 537(in Chinese).
刘元林, 赵国金, 高帅帅, 等. 黑龙江科技大学学报, 2018, 28(5), 537.
57 Xuan J C, Cong G P, Lu D H, et al. Petrochemical Industry Technology, 2018, 25(11), 96(in Chinese).
轩军厂, 丛广佩, 路笃辉, 等. 石化技术, 2018, 25(11), 96.
58 Luo L, Wang H Y. Laser Journal, 2020, 41(12), 146(in Chinese).
罗立, 王瀚艺. 激光杂志, 2020, 41(12), 146.
59 Dong L H, Guo W, Wang H D, et al. Acta Aeronautica et Astronautica Sinica, 2019, 40(8), 283(in Chinese).
董丽虹, 郭伟, 王海斗, 等. 航空学报, 2019, 40(8), 283.
60 Mi H, Yang M, Yu L, et al. Journal of Vibration, Measurement & Diagnosis, 2020, 40(1), 101(in Chinese).
米浩, 杨明, 于磊, 等. 振动. 测试与诊断, 2020, 40(1), 101.
61 Gao Z F, Dong L H, Wang H D, et al. Laser & Infrared, 2020, 50(10), 1207(in Chinese).
高治峰, 董丽虹, 王海斗, 等. 激光与红外, 2020, 50(10), 1207.
[1] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[2] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[3] 梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
[4] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[5] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[6] 刘长赛,王玉江,盛忠起,魏世丞,梁义,李岳彬,王博. 曲轴维修与再制造现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 141-148.
[7] 朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超. 可视化无损检测技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 63-69.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed