Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21010008-6    https://doi.org/10.11896/cldb.21010008
  无机非金属及其复合材料 |
兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究
乔国斌1,2, 乔宏霞1,2, 路承功1
1 兰州理工大学土木工程学院, 兰州 730050
2 兰州理工大学西部土木工程防灾减灾教育部工程研究中心, 兰州 730050
Study on Energized Corrosion Mechanism of Reinforced Concrete in Groundwater Environment of Lanzhou Metro
QIAO Guobin1,2, QIAO Hongxia1,2, LU Chenggong1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对兰州地铁一号线地下水环境含有大量侵蚀离子导致混凝土中钢筋过早锈蚀的问题,本工作通过模拟地下水环境对三种不同水胶比的钢筋混凝土试件进行通电加速锈蚀试验,利用电学无损检测法表征钢筋腐蚀程度,辅以微观检测手段验证试验结果,综合分析混凝土内钢筋腐蚀规律。最终推导并定义锈蚀系数k作为表征钢筋锈蚀程度的评价参数,并验证其合理性。结果表明:随着通电腐蚀的加剧,钢筋电阻值呈先下降后上升的趋势,其中水胶比越小的试件下降程度越明显;钢筋电流值持续下降,其下降速率呈“慢-快-慢”的规律;微观结果与实测数据具有相同规律,锈蚀系数k的定义从锈蚀产物层面印证混凝土保护性的优劣会导致锈蚀产物存在一定差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔国斌
乔宏霞
路承功
关键词:  钢筋混凝土  离子侵蚀  通电腐蚀  无损检测  钢筋锈蚀    
Abstract: In view of the problem that the groundwater environment of Lanzhou Metro Line 1 contains a lot of corrosive ions, which leads to premature corrosion of reinforcement in concrete, this work simulated the groundwater environment, and carried out energized and accelerated corrosion test on three kinds of reinforced concrete specimens with different water binder ratio in which. The electrical nondestructive test was used to characterize the corrosion degree of rebars, and a microscopic test was used to verify the test results, and the corrosion laws of rebars were comprehensively analyzed. Finally, the corrosion coefficient k is derived and defined as an evaluation parameter to characterize the corrosion degree of reinforcement, and its rationality is verified. The results show that, with the aggravation of energized corrosion, the resistance value of steel bars decreases first and then increases, and the specimens of low water-binder ratio decreased more obviously; the current value of steel bar continues to drop, and the rate of decline follows the law of "slow-fast-slow"; the microscopic results have the same law as the measured data. The definition of corrosion coefficient k confirms that the difference in concrete protectiveness will lead to differences in corrosion products from the perspective of corrosion products.
Key words:  reinforced concrete    ion erosion    electrified corrosion    nondestructive testing    rebar corrosion
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51168031;51868044);兰州理工大学红柳一流学科建设计划资助
通讯作者:  qiaohx7706@163.com   
作者简介:  乔国斌,2021年6月毕业于兰州理工大学,获得硕士学位。现为天津大学建筑工程学院博士研究生。研究方向为混凝土耐久性及寿命预测。
乔宏霞,中国科学院青海盐湖研究所出站博士后,兰州理工大学教授、博士研究生导师。2007年于兰州理工大学获工学博士学位;2009年进入中国科学院青海盐湖研究所化学博士后流动站从事博士后科研工作。主要研究方向有:混凝土抗硫酸盐侵蚀性及耐久性寿命预测研究、镁水泥钢筋混凝土研究、再生骨料混凝土研究、纤维及纳米混凝土研究、新型墙体材料等。近年来发表论文100余篇,其中SCI/EI检索数30余篇。
引用本文:    
乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
QIAO Guobin, QIAO Hongxia, LU Chenggong. Study on Energized Corrosion Mechanism of Reinforced Concrete in Groundwater Environment of Lanzhou Metro. Materials Reports, 2022, 36(19): 21010008-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010008  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21010008
1 China Concrete & Cement-based Products Association. China Concrete, 2016(8), 8 (in Chinese).
中国混凝土与水泥制品协会.混凝土世界, 2016(8), 8.
2 Jin W L, Zhao Y X. Journal of Zhejiang University(Engineering Science), 2002(4), 27 (in Chinese).
金伟良, 赵羽习. 浙江大学学报(工学版), 2002(4), 27.
3 Chen G X. Journal of China Institute of Water Resources and Hydropower Research, 2009, 7(2), 280 (in Chinese).
陈改新. 中国水利水电科学研究院学报, 2009, 7(2), 280.
4 Li X, Zhang D, Liu Z, et al. Nature, 2015, 527(7579), 441.
5 Yu H F, Liu L X, Cao J D, et al. Journal of Shenyang Jianzhu University(Natural Science), 2005(2), 125(in Chinese).
余红发, 刘连新, 曹敬党, 等. 沈阳建筑大学学报(自然科学版), 2005(2), 125.
6 Hong N F. Industrial Construction, 1998(1), 5 (in Chinese).
洪乃丰. 工业建筑, 1998(1), 5.
7 Yu H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction. Ph.D. Thesis, Southeast University, China, 2004 (in Chinese).
余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法. 博士学位论文, 东南大学, 2004.
8 Odler I, Gasser M. Journal of the American Ceramic Society, 2010, 71(11), 1015.
9 Shi J J, Sun W. Journal of the Chinese Ceramic Society, 2010, 38(9), 1753(in Chinese).
施锦杰, 孙伟. 硅酸盐学报, 2010, 38(9), 1753.
10 Ou G, Feng T, Debao L, et al. Journal of Wuhan University of Technology(Materials Science), 2016, 31(2), 345.
11 Yuan Y S, Zhang X S, Ji Y S. China Civil Engineering Journal, 2006(3), 42(in Chinese).
袁迎曙,章鑫森,姬永生. 土木工程学报, 2006(3), 42.
12 Uomoto T, Tsuji K, Kakizawa T. Transaction of Japan Concrete Institute, 1985, 6,163.
13 Feng W P. Experimental research on the electric accelerated corrosion method and the current efficiency. Master's Thesis, Shenzhen University, China, 2015 (in Chinese).
冯伟鹏. 钢筋通电加速锈蚀方法与锈蚀效率的研究及其应用. 硕士学位论文, 深圳大学, 2015.
14 Gao R D. Micro-macro degradation regularity of sulfate attack on concrete under complex environments.Ph.D. Thesis, Tsinghua University, China, 2010 (in Chinese).
高润东. 复杂环境下混凝土硫酸盐侵蚀微-宏观劣化规律研究. 博士学位论文, 清华大学, 2010.
15 Wang S, Larry B, Fernando F. Fuel, 2008, 87( 3), 372.
16 Escalante-Garcia J I. Cement & Concrete Research, 2003, 33(11), 1883.
17 Andrade C, Alonso C. Construction & Building Materials, 2001, 15(2/3), 141.
18 Zheng F, Shi G Y, Dong B Q,et al. Journal of the Chinese Ceramic Society, 2018, 46(8), 1081(in Chinese).
郑帆, 史桂昀, 董必钦, 等. 硅酸盐学报, 2018, 46(8), 1081.
19 Ma H Y, Jia Z J, Wu X R,et al. Energy Storage Science and Technology, 2012(2), 57(in Chinese).
马洪运, 贾志军, 吴旭冉, 等. 储能科学与技术, 2012(2), 57.
20 Ji Y S, Zhang L L, Ma H R,et al. Journal of Central South University(Science and Technology), 2012, 43(11), 4484(in Chinese).
姬永生, 张领雷, 马会荣, 等. 中南大学学报(自然科学版), 2012, 43(11), 4484.
[1] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[2] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[3] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[4] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[5] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[6] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[7] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[8] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[9] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[10] 张跃, 申林方, 王志良, 董武书. 考虑温度时变效应氯离子侵蚀混凝土的格子Boltzmann数值模型[J]. 材料导报, 2021, 35(16): 16035-16041.
[11] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[12] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[13] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[14] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[15] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed