Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1003-1010    https://doi.org/10.11896/cldb.20060104
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用? |
铝基非晶材料研究与再制造应用前景
梁秀兵1, 周志丹1,2, 张志彬1, 程江波3, 陈永雄1
1 中国人民解放军军事科学院国防科技创新研究院,北京 100071
2 中国矿业大学化工学院,徐州 221116
3 河海大学力学与材料学院,南京 211100
Al-based Amorphous Materials: Research and Remanufacturing Application Prospects
LIANG Xiubing1, ZHOU Zhidan1,2, ZHANG Zhibin1, CHENG Jiangbo3, CHEN Yongxiong1
1 National Innovation Institute of Defense Technology, Academy of Military Sciences of PLA, Beijing 100071, China
2 School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
3 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
下载:  全 文 ( PDF ) ( 5436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 发现于20世纪60年代的铝基非晶合金作为一种低密度材料拥有着较高的比强度,而且与传统晶态材料相比,呈现出长程无序、短程有序的原子排列特点,其内部不存在晶界、位错等较易引发失效的缺陷结构,表现出高硬度和优异的防腐、耐磨等性能,受到了国内外众多学者的广泛关注。起初,这类材料由于受到制备工艺的限制,表现为非晶与纳米晶共存的结构。随着科技发展,科学家们开发了一系列具有完全非晶结构的铝基合金体系。这些材料在具有较高的机械强度的同时能够表现出良好的韧性,使人们对其非晶形成能力、制备方法及应用推广等方面产生了较大的兴趣。
   对铝基非晶合金非晶形成能力的研究,学者们通常基于块体非晶合金非晶形成能力的经验判据,以及其他一些新提出的判定方法,如蒸发焓、费米层电子态密度、原子扩散以及析出相熔点等。但是,由于铝基非晶合金过冷液相区间较窄以及Al元素化学活性较强,因此铝基非晶合金的非晶形成能力普遍较弱。虽然人们在元素种类及含量变化对铝基非晶合金非晶形成能力的影响等方面做了大量的研究工作,但是目前仍未形成具有普适性的或更加精确的铝基非晶形成能力判定方法,未来仍需借助高性能材料模拟计算和机器学习等技术来进行完善。
   铝基非晶合金非晶形成能力较弱,以及其对外界条件的影响较为敏感,导致其在制备过程中易发生晶化,从而使获得的材料尺寸维度普遍较低。目前,铝基非晶合金的常见制备方法可按照其形态(粉状、块体、涂层等)来进行划分。粉状铝基非晶合金的制备方法主要为气雾化法和机械合金化法;块体铝基非晶合金的制备方法主要为直接凝固法和粉末冶金法;涂层类铝基非晶合金的制备方法主要包括激光熔覆、爆炸喷涂、冷喷涂、超音速火焰喷涂和电弧喷涂。相对而言,铝基非晶涂层制备技术不会受到工件尺寸的限制,工艺简单、操作方便,且适合于户外大面积施工,在表面防护与再制造工程领域更具应用潜力。尤其是在大型舰船、飞机、海洋设施等高附加值零件的再制造领域里,铝基非晶涂层制备技术的大规模推广应用将会带来巨大的经济效益。
   本文介绍了铝基非晶合金的发展过程、非晶形成能力、制备方法等内容,总结了铝基非晶涂层在再制造领域的应用前景,并展望了铝基非晶合金的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁秀兵
周志丹
张志彬
程江波
陈永雄
关键词:  铝基非晶合金  非晶形成能力  热喷涂  涂层  再制造    
Abstract: The aluminum-based amorphous alloy that emerged in the 1960s has a high specific strength as a low-density material. Compared with traditional crystalline materials, it exhibits long-range disordered and short-range ordered atomic arrangement characteristics. There are no defect structures such as grain boundaries and dislocations that are more likely to cause failure, and it shows high hardness and excellent corrosion resistance and wear resistance. It has attracted widespread attention from many scholars at home and abroad. At first, due to the limitation of the preparation process, this type of material showed a structure in which amorphous and nanocrystalline phases coexist. With the development of science and technology, scientists have developed a series of aluminum-based alloy systems with completely amorphous structure. These mate-rials have high mechanical strength and can show good toughness, which has caused great interest in the amorphous forming ability, preparation methods and application promotion.
The research on the amorphous forming ability of aluminum-based amorphous alloys is usually based on the empirical criterion of the amorphous forming ability of bulk amorphous alloys, as well as some other newly proposed judgment methods, such as enthalpy of evaporation, density of Fermi layer electronic states, diffusion and melting point of precipitated phase. However, due to the narrow-supercooled liquid phase range of aluminum-based amorphous alloys and the strong chemical activity of Al element, the amorphous forming ability of aluminum-based amorphous alloys is generally weak. Although a lot of research work has been done on the influence of element types and content changes on the amorphous forming ability of aluminum-based amorphous alloys, there is no universal or more accurate method for determining the ability of aluminum-based amorphous formation In the future, we still need to use high-performance material simulation computing and machine learning to improve.
Aluminum-based amorphous alloys have weak amorphous forming ability and are sensitive to the influence of external conditions, so that they are often prone to crystallization during the preparation process, resulting in generally lower dimensions of the obtained materials. At present, common preparation methods of aluminum-based amorphous alloys can be divided according to their morphology (powder, bulk, coating, etc.). The preparation method of powdery aluminum-based amorphous alloy is mainly gas atomization method and mechanical alloying method; the preparation method of bulk aluminum-based amorphous alloy is mainly direct solidification method and powder metallurgy method; coating type aluminum-based amorphous alloy. The preparation methods mainly include laser cladding, explosive spraying, cold spraying, supersonic flame spraying and arc spraying. Relatively speaking, the preparation technology of aluminum-based amorphous coating will not be limited by the size of the workpiece, the process is simple, the operation is convenient, and it is suitable for outdoor large-area construction, and has more application potential in the field of surface protection and remanufacturing engineering. Especially in the field of remanufacturing of high value-added parts such as large ships, aircraft, and marine facilities, the large-scale promotion and application of aluminum-based amorphous coating preparation technology will bring huge economic benefits.
The development process, amorphous-forming ability and preparation method of the aluminum-based amorphous alloy were introduced. The application prospects of the aluminum-based amorphous coating in the field of remanufacturing were summarized. The future research direction of alloys was prospected.
Key words:  Al-based amorphous alloy    glass forming ability    thermal spraying    coating    remanufacturing
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TG139.8  
基金资助: 国家重点研发计划项目(2018YFC1902400);国家自然科学基金(51975582)
作者简介:  梁秀兵,军事科学院国防科技创新研究院前沿交叉技术研究中心主任,研究员、博导。从事新型亚稳态材料科研工作,承担了国家重点研发计划、国家863计划、国家自然科学基金等多项重点项目。荣获国家奖3项;专利授权35项;出版著作4部;发表论文200余篇。荣获中国科协求是奖、中国青年科技奖,入选教育部新世纪优秀人才支持计划、国家百千万人才工程,并被授予有突出贡献中青年专家称号,获国务院特殊津贴。
引用本文:    
梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
LIANG Xiubing, ZHOU Zhidan, ZHANG Zhibin, CHENG Jiangbo, CHEN Yongxiong. Al-based Amorphous Materials: Research and Remanufacturing Application Prospects. Materials Reports, 2021, 35(1): 1003-1010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060104  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1003
1 Inoue A, Wang X, Zhang W. Review on Advanced Materials Science,2008,18(1),1.
2 Li H X, Lu Z C, Wang S L, et al. Progress in Materials Science,2019,103,235.
3 Inoue A, Takeuchi A. Acta Materialia,2011,59(6),2243.
4 Inoue A, Takeuchi A. Materials Science and Engineering: A,2004,375,16.
5 Liang X B, Cheng J B, Feng Y, et al. Journal of Materials Engineering,2017(9),1(in Chinese).
梁秀兵,程江波,冯源,等.材料工程,2017(9),1.
6 Wang Z, Georgarakis K, Nakayama K, et al. Scientific Reports,2016,6,24384.
7 Zhou L, Pang S, Wang H, et al. Chinese Physics Letters,2009,26(6),066402.
8 Li G, Pan S, Qin J, et al. Corrosion Science,2013,66,360.
9 Yang B J, Yao J H, Zhang J, et al. Scripta Materialia,2009,61(4),423.
10 Wu J, Zhang S D, Sun W H, et al. Corrosion Science,2018,136,161.
11 Zhang S D, Wu J, Qi W B, et al. Corrosion Science,2016,110,57.
12 Wu J, Zhang S D, Sun W H, et al. Surface and Coatings Technology,2018,335,205.
13 Sun B A, Pan M X, Zhao D Q, et al. Scripta Materialia,2008,59(10),1159.
14 Telford M. Materials Today,2004,7(3),36.
15 Predecki P, Giessen B C, Grant N J. Transactions of the Metallurgical Society of AIME,1965,233,1438.
16 Inoue A, Kitamura A, Masumoto T. Journal of Materials Science,1981,16(7),1895.
17 Suzuki R, Komatsu Y, Kobayashi K, et al. Journal of Materials Science,1983,18(4),1195.
18 Inoue A, Yamamoto M, Kimura H, et al. Journal of Materials Science Letters,1987,6(2),194.
19 Dubois J, de Boissieu M, Pianelli A, et al. Scripta metallurgica,1989,23(7),1069.
20 He Y, Poon S, Shiflet G. Science,1988,241(4873),1640.
21 Tsai A P, Inoue A, Masumoto T. Metallurgical Transactions A,1988,19(5),1369.
22 Inoue A, Ohtera K, Tsai A P, et al. Japanese Journal of Applied Physics,1988,27(9A),L1579.
23 Inoue A, Ohtera K, Tsai A P, et al. Japanese Journal of Applied Physics,1988,27(4A),L479.
24 Inoue A, Sobu S, Louzguine D V, et al. Journal of Materials Research,2011,19(5),1539.
25 Tsai A P, Inoue A, Masumoto T. Journal of Materials Science Letters,1988,7(8),805.
26 Turnbull D. Contemporary Physics,1969,10(5),473.
27 Inoue A. Materials Transactions, JIM,1995,36(7),866.
28 Lu Z, Liu C. Physical Review Letters,2003,91(11),115505.
29 Lu Z, Liu C. Acta Materialia,2002,50(13),3501.
30 Egami T, Waseda Y. Journal of Non-Crystalline Solids,1984,64(1-2),113.
31 Sá Lisboa R D, Bolfarini C, Botta F W J, et al. Applied Physics Letters,2005,86(21),211904.
32 Inoue A, Kato A, Zhang T, et al. Materials Transactions, JIM,1991,32(7),609.
33 Min B U, Lee J H, Park H J, et al. Scientific Reports,2020,10(1),4162.
34 Wu N C, Zuo L, Wang J Q, et al. Acta Materialia,2016,108,143.
35 Li X M, Wang Y, Yi J J, et al. Journal of Alloys and Compounds,2019,790,626.
36 Miracle D B, Sanders W S, Senkov O N. Philosophical Magazine,2003,83(20),2409.
37 Li J, Dai X, Liang S, et al. Physics Reports,2008,455(1-3),1.
38 Shen Y, Perepezko J H. Journal of Alloys and Compounds,2015,643,S260.
39 Rusanov B, Sidorov V, Svec P, et al. Journal of Alloys and Compounds,2019,787,448.
40 Zhang W, Chen S, Zhu Z, et al. Journal of Alloys and Compounds,2017,707,97.
41 Zhang Z, Xiong X Z, Yi J J, et al. Journal of Non-Crystalline Solids,2013,369,1.
42 Mansouri M, Varahram N, Simchi A. Journal of Non-Crystalline Solids,2019,506,46.
43 Cuevas F G, Lozano-Perez S, Aranda R M, et al. Journal of Non-Crystalline Solids,2019,512,15.
44 Kim Y S, Kim W T, Kim D H. Journal of Alloys and Compounds,2019,779,805.
45 Yin J M, Cai H N, Cheng X W, et al. Journal of Non-Crystalline Solids,2016,450,123.
46 Car R, Parrinello M. Physical Review Letters,1985,55(22),2471.
47 Parr R G. Density functional theory of atoms and molecules, Horizons of Quantum Chemistryed, Springer,1980.
48 Ren N, Shang B, Guan P, et al. Journal of Non-Crystalline Solids,2018,481,116.
49 Chen H, Li D, Zhao Y, et al. Physical Chemistry Chemical Physics,2019,21(8),4209.
50 Wang F R, Zhang H P, Li M Z. Journal of Alloys and Compounds,2018,763,392.
51 Han J J, Wang W Y, Liu X J, et al. Acta Materialia,2014,77,96.
52 Jakse N, Le Bacq O, Pasturel A. Journal of Chemical Physics,2005,123(10),104508.
53 Han J, Wang W Y, Wang C, et al. Intermetallics,2014,46,29.
54 Wang W Y, Han J J, Fang H Z, et al. Acta Materialia,2015,97,75.
55 Yu C Y, Hui X D, Chen X H, et al. Science China-Technological Sciences,2010,53(12),3175.
56 Wang W Y, Fang H Z, Shang S L, et al. Physica B: Condensed Matter,2011,406(15-16),3089.
57 Pasturel A, Jakse N. Journal of Non-Crystalline Solids,2015,425,176.
58 Wang Y G, Li Y J, Pan S P, et al. International Journal of Electrochemical Science,2016,11,3512.
59 Lubanska H. JOM Journal of the Minerals Metals and Materials Society,1970,22(2),45.
60 Suryanarayana C. Progress in Materials Science,2001,46(1-2),1.
61 Li X P, Yan M, Yang B J, et al. Materials Science and Engineering: A,2011,530,432.
62 Li X P, Yan M, Wang J Q, et al. Journal of Alloys and Compounds,2012,530,127.
63 Li X P, Yan M, Wang J Q, et al. Intermetallics,2012,30,117.
64 Sun J, Zhang J X, Fu Y Y, et al. Materials Science & Engineering A,2002,329,703.
65 Tan Z, Wang L, Xue Y F, et al. Journal of Materials Science & Technology,2016,32(12),1326.
66 Surreddi K B, Scudino S, Sakaliyska M, et al. Journal of Alloys and Compounds,2010,491(1-2),137.
67 Wang Z, Prashanth K G, Scudino S, et al. Intermetallics,2014,46,97.
68 Geng J Y, Sun Y F, Wang L G, et al. Transactions of Nonferrous Metals Society of China,2007,17(5),907.
69 Wang J Q, Liu Y H, Chen M W, et al. Advanced Functional Materials,2012,22(12),2567.
70 Yang B, Du Y, Liu Y. Transactions of Nonferrous Metals Society of China,2009,19(1),78.
71 Inoue A, Zhang T, Masumoto T. Materials Transactions, JIM,1995,36(3),391.
72 González S, Sort J, Louzguine-Luzgin D V, et al. Intermetallics,2010,18(12),2377.
73 Yang B J, Lu W Y, Zhang J L, et al. Scientific Reports,2017,7(1),11053.
74 Mu J, Fu H, Zhu Z, et al. Advanced Engineering Materials,2009,11(7),530.
75 Fu H M, Mu J, Wang A M, et al. Philosophical Magazine Letters,2009,89(11),711.
76 Zhuo L, Pang S, Wang H, et al. Journal of Alloys and Compounds,2010,504,S117.
77 Yin J, Cai H, Cheng X, et al. Journal of Alloys and Compounds,2015,648,276.
78 Wang J Q, Dong P, Hou W L, et al. Journal of Alloys and Compounds,2013,554,419.
79 Wang Z, Prashanth K G, Scudino S, et al. Journal of Alloys and Compounds,2014,586,S419.
80 Wang Z, Qu R T, Prashanth K G, et al. Materials Letters,2016,185,25.
81 Wang Z, Prashanth K G, Surreddi K B, et al. Materialia,2018,2,157.
82 Mula S, Mondal K, Ghosh S, et al. Materials Science and Engineering: A,2010,527(16-17),3757.
83 Sasaki T T, Hono K, Vierke J, et al. Materials Science and Engineering: A,2008,490(1-2),343.
84 Li X P, Yan M, Imai H, et al. Journal of Non-Crystalline Solids,2013,375,95.
85 Sahu A, Maurya R S, Laha T. Progress in Natural Science: Materials International,2019,29(1),32.
86 Sahu A, Maurya R S, Laha T. Advanced Powder Technology,2019,30(4),691.
87 Tan Z, Wang L, Xue Y, et al. Materials Science and Engineering: A,2015,642,377.
88 Maurya R S, Sahu A, Laha T. Materials Science and Engineering: A,2016,649,48.
89 Tan Z, Wang L, Xue Y, et al. Materials & Design,2016,109,219.
90 Tan C, Zhu H, Kuang T C, et al. Journal of Alloys and Compounds,2017,690,108.
91 Chen H, Kong D. Journal of Alloys and Compounds,2019,771,584.
92 Zhao W, Kong D. Applied Surface Science,2019,481,161.
93 Lahiri D, Gill P K, Scudino S, et al. Surface and Coatings Technology,2013,232,33.
94 Pitchuka S B, Boesl B, Zhang C, et al. Surface and Coatings Technology,2014,238,118.
95 Sun C, Zhou X, Xie C. Surface and Coatings Technology,2019,362,97.
96 Gao M, Lu W, Yang B, et al. Journal of Alloys and Compounds,2018,735,1363.
97 Tailleart N R, Gauthier B, Eidelman S, et al. Corrosion Science,2012,68(3),035006.
98 Zhang Z B, Liang X B, Chen Y X, et al. Physics Procedia,2013,50,156.
99 Zhang Z B, Liang X B, Chen Y X, et al. Materials and Corrosion,2014,65(9),919.
100 Liang X B, Fan J W, Zhang Z B, et al. Acta Metallurgica Sinica,2018,54(8),1193(in Chinese).
梁秀兵,范建文,张志彬,等.金属学报,2018,54(8),1193.
101 Xi X, Xia Y Q, Cao Z F, et al. China Mechanical Engineering,2017,(2),215.
102 Fan J W, Liang X B, Zhang Z B, et al. Hot Working Technology,2017(16),131(in Chinese).
范建文,梁秀兵,商俊超等.热加工工艺,2017(16),131.
103 Cheng J, Wang B, Liu Q, et al. Journal of Alloys and Compounds,2017,716,88.
104 Liu Q, Cheng J, Wang B, et al. Journal of Thermal Spray Technology,2018,27(6),949.
105 Cheng J, Feng Y, Yan C, et al. JOM Journal of the Minerals Metals and Materials Society,2019,72(2),745.
106 Presuel-Moreno F, Jakab M A, Tailleart N, et al. Materials Today,2008,11(10),14.
107 Henao J, Concustell A, Cano I, et al. Materials & Design,2016,94,253.
[1] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[2] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[3] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[4] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[5] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[6] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[7] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[8] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[9] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[10] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[11] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[12] 程倩, 姚正军, 张帆, 牛永康. 二次镍层复镀对Ni-MoS2复合涂层结构和摩擦承载能力的影响[J]. 材料导报, 2020, 34(22): 22093-22099.
[13] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[14] 张勇, 张耿飞, 张宇涛, 宁璠, 晁奕, 冯鹏发. CeO2掺杂Si-B复合涂层的制备及氧化行为[J]. 材料导报, 2020, 34(18): 18035-18038.
[15] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed