Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21050254-6    https://doi.org/10.11896/cldb.21050254
  高分子与聚合物基复合材料 |
缝合复合材料层板面内边缘冲击及冲击后压缩实验
李美艳1, 赖家美1,*, 莫明智1, 罗志强1, 黄志超2
1 南昌大学机电工程学院聚合物成型研究室,南昌 330031
2 华东交通大学载运工具与装备教育部重点实验室,南昌 330013
Experimental Investigation of Stitched Composite Laminates Subjected to In-plane Edge Impact and Compression After Impact
LI Meiyan1, LAI Jiamei1,*, MO Mingzhi1, LUO Zhiqiang1, HUANG Zhichao2
1 Polymer Processing Research Laboratory, School of Mechanical and Electric Engineering, Nanchang University, Nanchang 330031, China
2 Key Laboratory for Conveyance and Equipment of the Ministry of Education, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 11487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用真空辅助树脂传递成型(VARTM)技术制备缝合/未缝合碳纤维层板,并分别对其进行了五种不同能量的面内边缘冲击及冲击后压缩实验,结构内部的冲击损伤通过超声C扫描检测技术进行观测。结果表明:缝合工艺的引入能有效提高碳纤维层板的面内冲击阻抗及损伤容限,在五种能量范围内,冲击峰值力的增幅达到4.54%~10.33%,冲击后剩余压缩强度的增幅最高达到9.32%;另外,通过超声C扫描检测结果发现,面内边缘冲击后,在复合材料面板上的冲击点附近会出现一个半椭圆形的分层区域,且缝合层板的分层损伤面积明显小于未缝合层板;未缝合层板面内边缘冲击后压缩的主要破坏模式为分层扩展,而缝合层板面内边缘冲击后的压缩失效模式为整体屈曲。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李美艳
赖家美
莫明智
罗志强
黄志超
关键词:  缝合  面内边缘冲击  冲击后压缩  超声C扫描    
Abstract: Stitched and unstitched carbon fiber reinforcedplastic (CFRP) laminates were manufactured by the vacuum assisted resin transfer molding(VARTM) technique and subjected to in-plane edge impact and compression after impact under five different energies. The damage after edge impact inside the structure was detected by the ultrasonic C-scan method. The experimental results show that stitching can improve the edge-impact resistance and damage tolerance of the laminates effectively. Within the impact energy range tested, the peak impact force increased by 4.54%~10.33% and the maximum increase of the residual compressive strength after impact was 9.32%. In addition, through the result from ultrasonic C-scan, it is found that there was a semi-elliptical delaminated damage area near the impact edge on the composite plates after in-plane edge impact of the structures, and the damage area of the stitched laminates was significantly smaller than that of unstitched. The main compression failure mode after in-plane edge impact of the unstitched laminates was delamination propagation, while the stitched laminates was global buckling.
Key words:  stitching    in-plane edge impact    compression after impact    ultrasonic C-scan
发布日期:  2022-12-09
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51763016;51875201);江西省研究生创新专项资金(YC2020-S090)
通讯作者:  *laijm@163.com   
作者简介:  李美艳,南昌大学硕士研究生,本科毕业于衢州学院机械工程学院,主要从事聚合物成型方面的研究。
赖家美,南昌大学先进制造学院副教授。2004年获南昌大学材料加工工程专业博士学位,2009—2010年在美国密歇根州立大学从事博士后研究工作。主要从事聚合物基复合材料制备和性能研究,主持完成国家自然科学基金2项、江西省青年科学家培养对象计划项目1项、省(部)级科研项目3项等,发表论文50余篇。
引用本文:    
李美艳, 赖家美, 莫明智, 罗志强, 黄志超. 缝合复合材料层板面内边缘冲击及冲击后压缩实验[J]. 材料导报, 2022, 36(23): 21050254-6.
LI Meiyan, LAI Jiamei, MO Mingzhi, LUO Zhiqiang, HUANG Zhichao. Experimental Investigation of Stitched Composite Laminates Subjected to In-plane Edge Impact and Compression After Impact. Materials Reports, 2022, 36(23): 21050254-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050254  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21050254
1 Ostré B, Bouvet C, Minot C, et al. Composite Structures, 2016, 152, 767.
2 Thorsson S I, Sringeri S P, Waas A M, et al. Composite Structures, 2018, 186, 335.
3 Li N, Chen P H.Composite Structures, 2016, 138, 134.
4 Ostré B, Bouvet C, Minot C, et al. Composite Structures, 2016, 153, 478.
5 Wang L, Xiong S, Zhao Y, et al.Journal of Aeronautical Materials, 2018, 38(5), 147(in Chinese).
王莉, 熊舒, 肇研, 等. 航空材料学报, 2018, 38(5), 147.
6 Gong B B. Investigation of damage model of stitched laminates subjected to low-velocity impact. Master' Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018 (in Chinese).
宫保彬. 缝合复合材料层合板低速冲击损伤分析研究. 硕士学位论文, 南京航空航天大学, 2018.
7 Ruan J Q, Lai J M, Wang S, et al. PolymericMaterials Science and Engineering, 2020, 36(7), 103(in Chinese).
阮金琦, 赖家美, 王森, 等. 高分子材料科学与工程, 2020, 36(7), 103.
8 Mao C J, Xu X W, Zheng D.Acta Materiae Compositae Sinica, 2012, 29(2), 160(in Chinese).
毛春见, 许希武, 郑达. 复合材料学报, 2012, 29(2), 160.
9 Wang S, Lai J M, Ruan J Q, et al. Materials Reports, 2021, 35(2), 2178(in Chinese).
王森, 赖家美, 阮金琦, 等. 材料导报, 2021, 35(2), 2178.
10 Tou H L, Lu Z X, Ma X P,et al. Composites Part B: Engineering, 2019, 167, 329.
11 Ansari M M, Chakrabarti A.Composites Part B:Engineering, 2016, 95, 462.
12 Malhotra A, Guild F J. Applied Composite Materials, 2014, 21(1), 165.
13 Arteiro A, Gray P J, Camanho P P. Composite Structures, 2020,240, 112018.
14 Li N, Chen P H. Composite Structures, 2017, 162, 210.
15 Malhotra A, Guild F J, Pavier M J. Journal of Materials Science, 2008, 43(20), 6661.
16 Thorsson S I, Waas A M, Rassaian M, et al. Composite Structures, 2018, 203, 648.
17 Qi Y Y, Liu Y Q, Zhang Y F. New Chemical Materials, 2006, 34(3), 36(in Chinese).
齐燕燕, 刘亚青, 张燕飞. 化工新材料, 2006, 34(3), 36.
18 Israr H, Rivallant S, Barrau J J. Composite Structures, 2013, 96, 357.
19 Aymerich F, Priolo P. International Journal of Impact Engineering, 2008, 35(7), 591.
20 Gu S Q, Liu Y F, Li J, et al.Journal of Materials Engineering, 2019, 47(8), 110(in Chinese).
顾善群, 刘燕峰, 李军, 等. 材料工程, 2019, 47(8), 110.
[1] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[2] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[3] 杨宏宇, 吴宁, 王玉, 朱超, 张一帆, 陈利. 复合材料Tufting缝合技术的研究进展[J]. 材料导报, 2021, 35(23): 23219-23228.
[4] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[5] 余坤, 文立伟, 宦华松. 缝合复合材料T型加筋壁板的抗剪与抗弯性能[J]. 材料导报, 2021, 35(16): 16190-16194.
[6] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[7] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed