Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16190-16194    https://doi.org/10.11896/cldb.20050104
  高分子与聚合物基复合材料 |
缝合复合材料T型加筋壁板的抗剪与抗弯性能
余坤, 文立伟, 宦华松
南京航空航天大学材料科学与技术学院,南京 210016
Shearing and Bending Performance of Stitched Composite T-stiffened Panel
YU Kun, WEN Liwei, HUAN Huasong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 3737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了防止复合材料T型加筋壁板在服役过程中因剪切和弯矩作用而发生筋条与蒙皮的脱粘失效,引入了缝合技术来提高筋条-蒙皮界面的结合性能。采用自主研发的单线弯针缝合设备来缝合干纤维,通过真空辅助树脂灌注技术(VARI)固化成型,脱模后制成缝合T型加筋壁板试样。通过对试样进行剪切和弯曲试验,研究缝合的增强机理以及缝线细度对T型接头性能的影响规律。结果表明:在剪切应力作用下,缝合试样的峰值载荷比未缝合试样有明显提高,随着缝线细度增大,T型接头的峰值载荷升高,缝线细度增大到1 500 D时,峰值载荷提高55.0%。在弯曲应力作用下,随着缝线细度的增大,T型接头的峰值载荷先升高后降低。缝合对T型接头在两种不同应力下的初始损伤载荷均无明显影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余坤
文立伟
宦华松
关键词:  缝合  T型加筋壁板  缝线细度  剪切试验  弯曲试验    
Abstract: In order to prevent the debonding failure between stiffener and skin due to shearing and bending loads during service of T-stiffened composite panel, stitching technology was introduced to improve the interface performance between stiffener flange and skin. The self-developed sti-tching machine was used to stitch dry fibers, then stitched preform was cured and formed by vacuum assisted resin infusion (VARI) technology, and stitched T-stiffened panel samples were prepared after demoulding. The reinforcement mechanism of stitching and effects of thread fineness on properties of T-joints were researched through shear and bend tests. Results show that, under shearing stress, the ultimate failure load of stitched samples is significantly higher than that of unstitched samples. With the increase of thread fineness, ultimate failure load of T-joints increases. When thread fineness increases to 1 500 D, the ultimate failure load increases by 55.0%. Under bending stress, as thread fineness increases, ultimate failure load increases first and then decreases. Stitching has no obvious effect on the initial failure load of T-joints under two different stresses.
Key words:  stitching    T-stiffened panel    thread fineness    shearing test    bending test
                    发布日期:  2021-09-07
ZTFLH:  TB332  
基金资助: 国防基础科研计划(JCKY2019204A001);上海航天科技创新基金(SAST2019-117)
通讯作者:  wenliwei@nuaa.edu.cn   
作者简介:  文立伟,南京航空航天大学材料科学与技术学院副教授,硕士研究生导师。2005年获得哈尔滨工业大学博士学位,现从事先进复合材料自动化成型技术研究。近年来发表有关铺放成型技术方面的论文50余篇,申请国家专利10余项,2009年获国防科技进步一等奖1项,2016省科技进步二等奖1项。
引用本文:    
余坤, 文立伟, 宦华松. 缝合复合材料T型加筋壁板的抗剪与抗弯性能[J]. 材料导报, 2021, 35(16): 16190-16194.
YU Kun, WEN Liwei, HUAN Huasong. Shearing and Bending Performance of Stitched Composite T-stiffened Panel. Materials Reports, 2021, 35(16): 16190-16194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050104  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16190
1 Xiong J J, Shenoi R A. Chinese Journal of Aeronautics, 2019, 32(1), 114.
2 Ye J R, Zhang B M. Acta Materiae Compositae Sinica, 2009, 26(2), 187(in Chinese).
叶金蕊, 张博明. 复合材料学报, 2009, 26(2), 187.
3 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61(in Chinese).
孙振起, 吴安如. 材料导报, 2015, 29(11), 61.
4 Koh T M, Isa M D, Feih S, et al. Composites Part B-Engineering, 2013, 44(1), 620.
5 Duan Y S, Zhou X Q, Hou J S. Aeronautical Manufacturing Technology, 2012(18), 34(in Chinese).
段友社, 周晓芹, 侯军生. 航空制造技术, 2012(18), 34.
6 Yap J W H, Scott M L, Thomson R S, et al. Composite Structures, 2002, 57(1), 425.
7 Vijayaraju K, Mangalgiri P D, Dattaguru B. Composite Structures, 2004, 64(2), 227.
8 Bigaud J, Aboura Z, Martins A T, et al. Composite Structures, 2018, 184, 249.
9 Yin C P, Li J W, Liu J, et al. Materials Reports, 2007, 21(11), 136(in Chinese).
尹昌平, 李建伟, 刘钧, 等. 材料导报, 2007, 21(11), 136.
10 Iwahori Y, Nakane K, Watanabe N. Composites Science and Technology, 2009, 69(14), 2315.
11 Mignery L A, Tan T M, Sun C T. In: ASTM International. West Conshohocken, USA, 1985,pp. 371.
12 Cheng X Q, Zhao L, Zhang Y N. Journal of Beijing University of Aeronautics and Astronautics, 2003(11), 1001(in Chinese).
程小全, 赵龙, 张怡宁. 北京航空航天大学学报, 2003(11), 1001.
13 Yang L Y, Gong J Q, Huang D M. Composites Science and Engineering, 2020(1), 52(in Chinese).
杨龙英, 龚家谦, 黄当明. 复合材料科学与工程, 2020(1), 52.
14 Parlapalli M R, Soh K C, Shu D W, et al. Composites Part A-Applied Science and Manufacturing, 2007,38(9), 2024.
15 Sheng Y, Xiong K, Bian K, et al. Acta Materiae Compositae Sinica, 2013, 30(6), 185(in Chinese).
盛仪, 熊克, 卞侃, 等. 复合材料学报, 2013, 30(6), 185.
16 Huan H S, Wen L W, Xiao J, et al. Composites Science and Enginee-ring, 2020(3), 90(in Chinese).
宦华松, 文立伟, 肖军, 等. 复合材料科学与工程, 2020(3), 90.
17 Ghasemnejad H, Argentiero Y, Tez T A,et al. Materials and Design, 2013, 51, 552.
18 Khalili S M R, Ghaznavi A. Applied Composite Materials, 2013, 20(1), 41.
19 Richtsfeld M, Biegelbauer G, Wohlkinger W, et al. In: European Control Conference. Kos, Greece, 2007, pp. 2051.
20 Yao F L, Li L Y, Yue J F, et al. Journal of Mechanical Engineering, 2016, 52(13), 60(in Chinese).
姚福林, 李亮玉, 岳建锋, 等. 机械工程学报, 2016, 52(13), 60.
21 Pan J, Wen L W, Xiao J, et al. Fiber Reinforced Plastics/Composites, 2017(2), 76(in Chinese).
潘杰, 文立伟, 肖军, 等. 玻璃钢/复合材料, 2017(2), 76.
[1] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[2] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[3] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed