Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22162-22166    https://doi.org/10.11896/cldb.19120241
  高分子与聚合物基复合材料 |
缝合增强复合材料层合板层间断裂韧性研究
文立伟, 余坤, 封桥桥, 宦华松
南京航空航天大学材料科学与技术学院,南京 210016
Study on Interlaminar Fracture Toughness of Stitched Composite Laminates
WEN Liwei, YU Kun, FENG Qiaoqiao, HUAN Huasong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 4717KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高复合材料层合板抵抗分层的能力,引入缝合技术来提高层合板的层间断裂韧性。采用自主研发的单线弯针缝合设备来缝合干纤维,通过真空辅助树脂灌注技术(VARI)固化成型,脱模后制成缝合层合板试样。通过对试样进行双悬臂梁(DCB)试验研究了缝合密度对缝合层合板I型层间断裂韧性GIC的影响规律,并探究了缝线失效形式和层间断裂韧性间的联系。采用端部缺口弯曲(ENF)试验研究了缝合密度和缝线直径对缝合层合板 Ⅱ 型层间断裂韧性GIIC的影响机理。结果表明:缝合能够显著阻碍层间裂纹的扩展,随着缝合密度的增加,层合板I型层间断裂韧性均有不同程度的提高,Ⅱ 型层间断裂韧性表现出先略微降低而后上升的变化趋势;层合板层间断裂韧性随缝线直径的增大而增大。试验发现,缝线主要存在断裂与拔出两种失效形式,缝线断裂比例越高,相应的GIC也越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文立伟
余坤
封桥桥
宦华松
关键词:  缝合层合板  缝线  缝合密度  层间断裂韧性  分层    
Abstract: In order to prevent delamination failure of composite laminates, stitching technology is introduced to improve the interlaminar fracture toughness of laminates. The self-developed stitching machine is used to stitch dry fibers, then the stitched preform is cured and formed by vacuum assisted resin infusion (VARI) technology, and the stitchedlaminates samples are prepared after demoulding. The effect of stitching density on the mode I interlaminar fracture toughness GIC of laminates was researched by DCB test, and the relationship between the failure mode of suture and interlaminar fracture toughness was explored. The effect of stitching density and suture diameter on laminates mode Ⅱ interlaminar fracture toughness GIICwas investigated using ENF test. The results show that: stitching can significantly hinder the propagation of interlaminar cracks. With the increase of stitching density, the mode I interlaminar fracture toughness of laminates increases significantly, and the mode Ⅱ interlaminar fracture toughness shows a trend of slightly decreasing at first and then increasing. The interlaminar fracture toughness increases with the increase of suture diameter. The test found that there are two types of suture failure: fracture and pullout. The higher the proportion of suture fracture, the higher the corresponding GIC.
Key words:  stitched laminates    suture    stitching density    interlaminar fracture toughness    delamination
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TB332  
基金资助: 国防基础科研计划(JCKY2019204A001);上海航天科技创新基金(SAST2019-117)
通讯作者:  wenliwei@nuaa.edu.cn   
作者简介:  文立伟,南京航空航天大学材料科学与技术学院硕士研究生导师,副教授。2005年获得哈尔滨工业大学博士学位,现从事先进复合材料自动化成型技术研究。近年来发表有关铺放成型技术方面的论文 50 余篇,申请国家专利 10 余项,2009年获国防科技进步一等奖 1 项,2016年获省科技进步二等奖1项。
引用本文:    
文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
WEN Liwei, YU Kun, FENG Qiaoqiao, HUAN Huasong. Study on Interlaminar Fracture Toughness of Stitched Composite Laminates. Materials Reports, 2020, 34(22): 22162-22166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120241  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22162
1 Mouritz A P, Bannister M K, Falzon P J, et al. Composites Part A, 1999,30(12), 1445.2 Camanho P P, Davila C G, De Moura M F.Journal of Composite Mate-rials, 2003,37(16), 1415.3 Wang X F, Gao T C, Xiao J.Journal of Textile Research, 2019,40(12), 169(in Chinese).王显峰, 高天成, 肖军. 纺织学报, 2019,40(12), 169.4 Wang X M, Xing Y F.Acta Aeronautica et Astronautica Sinica, 2010,31(5), 914(in Chinese).汪星明, 邢誉峰. 航空学报, 2010,31(5), 914.5 Mouritz A P.Composites Part A, 2007,38(12), 2383.6 Ai T, Wang R M.Materials Review, 2005, 19(1), 64 (in Chinese).艾涛, 王汝敏. 材料导报, 2005,19(1), 64.7 Lu Z X, Feng Z M, Kou C H, et al. Acta Materiae Compositae Sinica, 1999(3), 130(in Chinese).卢子兴, 冯志海, 寇长河, 等. 复合材料学报, 1999(3), 130.8 Zhang C, Xu X W.Composite Structures, 2013,98, 130.9 Dong F Y, Wang C M, Dong J. Fiber Composites, 2001(3), 37(in Chinese).董孚允, 王春敏, 董娟. 纤维复合材料, 2001(3), 37.10 Partridge I K, Cartie D D R.Composites Part A, 2005,36(1), 55.11 Teng J, Li B T, Zhuang Z. Engineering Mechanics, 2006(S1), 209(in Chinese).滕锦, 李斌太, 庄茁. 工程力学, 2006(S1), 209.12 Zhu H D, Jiao G Q, Yang B N. Acta Materiae Compositae Sinica, 2001, 18(2), 85 (in Chinese).朱华东, 矫桂琼, 杨宝宁. 复合材料学报, 2001, 18(2), 85.13 Velmurugan R, Solaimurugan S.Composites Science & Technology, 2008, 68(7), 1742.14 Iwahori Y, Nakane K, Watanabe N.Composites Science and Technology, 2009, 69(14), 2315.15 Cheng X Q, Zhao L, Zhang Y N.Journal of Beijing University of Aeronautics and Astronautics, 2003(11), 1001(in Chinese).程小全, 赵龙, 张怡宁. 北京航空航天大学学报, 2003(11), 1001.16 Tan K T, Watanabe N.International Journal of Damage Mechanics, 2012,21(1), 51.17 Bortoluzzi D B, Gomes G F, Hirayama D, et al.The International Journal of Advanced Manufacturing Technology, 2019,100(5-8), 1593.
[1] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[4] 贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏. CFRP层合板抗分层损伤技术研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2288-2294.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed