Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21050253-6    https://doi.org/10.11896/cldb.21050253
  金属与金属基复合材料 |
微张力对不锈钢/碳钢界面复合质量及原子扩散的影响
刘鑫1, 帅美荣1,*, 李海斌1, 谢广明2, 常彬彬1, 李亮1
1 太原科技大学重型机械教育部工程研究中心,太原 030024
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110004
Effect of Micro-tension on Interfacial Composite Quality and Atomic Diffusion of Stainless/Carbon Steel
LIU Xin1, SHUAI Meirong1,*, LI Haibin1, XIE Guangming2, CHANG Binbin1, LI Liang1
1 Engineering Research Center of Heavy Machinery Ministry of Education,Taiyuan University of Science and Technology,Taiyuan 030024,China
2 State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang,110004,China
下载:  全 文 ( PDF ) ( 21743KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着绿色可持续化工业进程的推进和人类资源开发向海洋的转移,耐腐蚀钢筋市场需求量逐渐提高。本工作采用有限元仿真技术建立不锈钢/碳钢复合钢筋四道次连续轧制模型,深入研究不同轧制工况对复合钢筋覆层壁厚均匀度以及界面“空洞”缺陷的影响;通过加载拉应力工况建立COMPASS力场下的界面模型,探究复合钢筋界面原子扩散行为。宏/微观模拟研究表明:微张力轧制会促使双金属界面形成“空洞”,但能显著抑制轧制过程中“耳子”缺陷的产生;拉应力(微张力)升高有效促进了界面沿(111)晶面滑移,并产生了有序度高且一致的界面结构。复合界面微观组织试验同样表明,在高温高压微张力作用下,界面元素过渡平缓,金属碎粒与孔洞消失;近界面区域主要为铁素体晶粒,且越靠近界面珠光体含量越少,渗碳作用越明显。本研究有助于揭示不锈钢/碳钢高压微张力复合过程中金属流动规律及界面原子迁移机制,为优化复合工艺奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鑫
帅美荣
李海斌
谢广明
常彬彬
李亮
关键词:  微张力  界面复合  原子扩散  实验研究    
Abstract: With the advance of industrial process of the green and sustainable feature and the transfer of human resources development to sea engineering,the market demand for corrosion-resistant steel bars is gradually increasing. In this work,the continuous rolling models of four passes for stainless/carbon steel were established by finite element simulation. The effect of different rolling conditions on the wall thickness uniformity of the coating metal and the interface cavity were deeply analyzed. The interface models under COMPASS force field by loading the tensile stress were employed to explore the diffusion mechanism of interface atoms. The results from macro and micro simulation show that the micro-tension rolling can promote the formation of cavity in the bimetal interface. However,it is positive to significantly restrain the appearance of ‘ear' defects during the rolling process. The increase of tensile stress (micro-tension) could effectively promote the interface slip along the (111) crystal plane,which produces a high and consistent order of the interface structure. The experimental results from micro-structure indicate that the transitions of metallic elements are gentle,and metal impurities as well as holes disappear. The interface is starting towards integration under the action of high temperature,high pressure and micro- tension. There is a large number of ferrite grains in the near interface area. The closer the interface,the less the content of pearlite,and the carburizing action is obvious during this process. This research helps to reveal the flow law of metals and the migration mechanism of interface atoms during the composite process of dissimilar metals,which would provide the theoretical foundation for optimizing the process.
Key words:  micro-tension    interface combination    atomic diffusion    experimental research
发布日期:  2022-12-09
ZTFLH:  TG335.82  
基金资助: 国家自然科学基金(52075357);山西省重点研发计划(201903D121043);轧制技术及连轧自动化国家重点实验室(东北大学)开放课题(2020RALKFKT013);山西省研究生教育改革研究课题(2020YJJG241);山西省研究生教育创新项目(2021Y709)
通讯作者:  *ruoxin2001@163.com   
作者简介:  刘鑫,2018年6月、2021年6月分别于济南大学和太原科技大学获得学士和硕士学位。主要从事金属塑性成形复合机理及工艺设计领域的研究。
帅美荣,太原科技大学重型机械教育部工程研究中心教授、硕士研究生导师。2001年内蒙古科技大学金属压力加工专业本科毕业到太原科技大学工作至今,2006年太原科技大学材料加工工程专业硕士毕业,2012年太原科技大学机械设计及理论专业博士毕业。目前主要从事高性能金属塑性变形机理与复合材料界面演化等领域的研究工作。发表高水平学术论文40余篇,授权国家发明专利10余项,软件著作权8项,主编国家规划教材1部,合编著作2部。
引用本文:    
刘鑫, 帅美荣, 李海斌, 谢广明, 常彬彬, 李亮. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响[J]. 材料导报, 2022, 36(23): 21050253-6.
LIU Xin, SHUAI Meirong, LI Haibin, XIE Guangming, CHANG Binbin, LI Liang. Effect of Micro-tension on Interfacial Composite Quality and Atomic Diffusion of Stainless/Carbon Steel. Materials Reports, 2022, 36(23): 21050253-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050253  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21050253
1 Karabulut B,Ferraz G,Rossi B. Journal of Environmental Management,2021,277,111460.
2 Mudhaffar M A,Saleh N A,Aassy A. Procedia Manufacturing,2017,8,353.
3 García-Alonsoa M C,Escuderoa M L,Mirandaa J M,et al. Cement and Concrete Research,2007,37,1463.
4 Wang H W. Simulation rolling and experimental research on carbon steel pass of stainless steel/carbon steel composite bar. Master's Thesis,University of Science and Technology Liaoning,China,2018(in Chinese).
王宏伟. 不锈钢/碳钢复合钢筋碳钢孔型模拟轧制及实验研究. 硕士学位论文,辽宁科技大学,2018.
5 Wu W,Cai Q W,Yu W,et al. Steel Rolling,2015,32(6),135(in Chinese).
吴伟,蔡庆伍,余伟,等. 轧钢,2015,32(6),135.
6 David D,Joann B,Trung V N,et al. Evaluation of Metalfized Stainless Steel Clad,2007, SD2002, 16.
7 Mudhaffar M A,Saleh N A,Aassy A. Procedia Manufacturing,2017,8,353.
8 Liu X K,Zhang Y H,Pan M Q,et al. Tool Engineering,2006,40(10),32(in Chinese).
刘小康,张铱洪,潘敏强,等. 工具技术,2006,40(10),32.
9 Sawicki S,Dyja H. Metallurgical and Mining Industry,2011,3(7),63.
10 Zhang S K.The composite rolling experiment and finite element simulation of the iron scrap with stainless steel coating. Ph.D.Thesis,Yanshan University,China,2014(in Chinese).
张少坤. 不锈钢包覆铁屑复合轧制实验及有限元模拟. 博士学位论文,燕山大学,2014.
11 Gao Y N. Rolling theory and experimental research of stainless steel/carbon steel cladding bar. Ph.D.Thesis,Yanshan University,China,2011(in Chinese).
高亚男. 不锈钢/碳钢覆层钢筋轧制理论及实验研究. 博士学位论文,燕山大学,2011.
12 Xie H B,Xie P P,Xiao H,et al. Journal of Plasticity Engineering,2016,23(1),69(in Chinese).
谢红飙,解芃芃,肖宏,等. 塑性工程学报,2016,23(1),69.
13 Li Z H. The composite rolling experiment and finite element simulation of the iron scrap with stainless steel coating. Master's Thesis,Yanshan University,China, 2011(in Chinese).
李振虎. 孔型系统对不锈钢覆层钢筋轧制影响的模拟与实验研究.硕士学位论文,燕山大学,2011.
14 Li X L,Cheng W G,Zhou L X,et al. Special Steel,2016,37(5),5(in Chinese).
李小龙,程卫国,周立新,等. 特殊钢,2016,37(5),5.
15 Wu Cheng. Research on FEM Simulation of Q235 and 304 Stainless Clad Sheet in Hot-Rolling Process. Master's Thesis,Xi'an University of Architecture and Technology,China,2005(in Chinese).
吴成. Q235/304不锈钢复合板热轧有限元模拟研究. 硕士学位论文,西安建筑科技大学,2005.
16 Masuda S,Nakauchi I,Tagane A,et al. Transactions of the Iron and Steel Institute of Japan,1988,28(6),470.
17 Wang Xuehui,Liu Chunyang,Deng Yongcun,et al. Metal World,2011(2),40(in Chinese).
王学慧,刘春阳,邓永存,等.金属世界,2011(2),40.
18 Gao Ya'nan,Zhang Yanju,Hao Ruichao,et al. Special Steel,2013,34(4),5(in Chinese).
高亚男,张艳菊,郝瑞朝,等. 特殊钢,2013,34(4),5.
19 Liang Haiyi. Molecular Dynamics Simulation of Mechanical Properties of Nano Copper. Ph.D.Thesis,University of Science and Technology of China,China,2001(in Chinese).
梁海弋. 纳米铜力学行为的分子动力学模拟. 博士学位论文,中国科学技术大学,2001.
20 Liu X,Shuai M R,Chang B B,et al. Heavy Machinery,2020(357),46(in Chinese).
刘鑫,帅美荣,常彬彬,等. 重型机械,2020(357),46.
21 Dhib Z,Guermazi N,Monique G,et al. Materials Science & Engineering A,2016,656,130.
22 Li Z,Zhao J,Jia F,et al. Materials Science & Engineering A,2020,787,139513.
23 Wang S,Liu B X,Chen C X,et al. Journal of Alloys and Compounds,2018,766,517.
24 Liu B X,Wang S,Fang W,et al. Materials Chemistry and Physics,2018,216,460.
25 Yazdani M,Toroghinejad M R,Hashemi S M. Journal of Materials Engineering and Performance,2016,25(12),5330.
26 Liu B X,Yin F X,Dai X L,et al. Materials Science & Engineering A,2017,679,172.
27 Dhib Z,Guermazi N,Ktari A,et al. Materials Science & Engineering A,2017,696,374.
[1] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[2] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[3] 张墅野, 鲍天宇, 修子扬, 何鹏. 三维封装电迁移Cu互连线的多物理场模拟仿真[J]. 材料导报, 2021, 35(2): 2133-2138.
[4] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed