Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2133-2138    https://doi.org/10.11896/cldb.20060120
  金属与金属基复合材料 |
三维封装电迁移Cu互连线的多物理场模拟仿真
张墅野, 鲍天宇, 修子扬, 何鹏
哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
Multi-physics Simulation of 3D Electromigration of Cu Interconnect
ZHANG Shuye, BAO Tianyu, XIU Ziyang, HE Peng
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 3261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着三维封装微互连尺寸向亚微米发展,电流密度大、应力大、散热困难等问题愈发严重,原子尺度迁移失效现象逐渐成为超大规模集成电路不可忽视的可靠性问题。铜比铝的电阻率低,抗电迁移性能更好,是新一代的可靠互连材料,但是对铜互连的原子迁移研究仍有不足。
   现有的电迁移(Electromigration)可靠性解析化模型主要针对单根金属线恒定温度情形下的电迁移分析,这种方法虽然计算较为简单,但是对现实情况的指导意义较小,主要原因:一是现实情况下高密度集成电路中存在温度梯度,二是互连线的三维结构对互连线的温度以及电流分布有重要影响,而这些参数严重影响着金属原子的抗电迁移性能。本工作提出一种新的电迁移仿真建模方法,通过COMSOL多物理场软件建立了经典三维Cu互连线结构。通过有限元仿真得到三维互连线的温度、电流密度和应力分布, 获得了更优的数据仿真结果。
   结果显示,金属互连线中电流在直角内侧有严重的淤积现象,电迁移在互连线转折处最为剧烈;高温区域位于直角内外侧之间,热迁移的程度随着温度的升高而升高;高应力区域主要是互连线的外边缘处,但是应力迁移在总体电迁移中占比较小,几乎可以忽略。另外,Cu互连线的抗电迁移性能总体优于Ag互连线,是优异的高密度集成电路导体材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张墅野
鲍天宇
修子扬
何鹏
关键词:  电迁移  互连线  原子扩散通量散度  温度影响  材料影响    
Abstract: With the development of three-dimensional package interconnects decreasing their sizes into sub-micro levels, problems such as high current density, high-stress, and difficulty heat dissipation have become more and more serious. The phenomenon of atomic-scale migration fai-lure has gradually become a reliability problem that cannot be ignored in VLSI. Copper has a lower resistivity than aluminum and has better electromigration resistance. It is a new generation of reliable interconnect material, but there are still insufficient studies on atomic migration of copper interconnects.
The present analytical mode of the electromigration reliability is mainly aimed at the single metal wire at a constant temperature. Although this method is relatively simple to calculate, it has little significance for the guiding of the actual situation. The main reasons are as follows: 1.It is the temperature gradient that exists in high-density integrated circuits in reliability. 2.The three-dimensional structure of the interconnection line has an important influence on the distribution of the temperature and electrical current of the interconnect. These parameters seriously affect the electromigration resistance of metal atoms. This work proposes a new modeling method of electromigration simulation, and establishes a classic three-dimensional Cu interconnect structure through COMSOL multiphysics software. The temperature, current density and stress distribution by a finite element simulation were carried out and better data simulation results were obtained.
The results show that the current in the metal interconnection has serious siltation phenomenon on the inner side of the right angle, and the electromigration is most intense at the turning point of the interconnection line; the high temperature area is located between the inner and outer sides of the right angle, and the degree of thermal migration increases with the increase of temperature; the high-stress area is mainly at the outer edge of the interconnection line, but the stress migration accounts for a relatively small proportion of the overall electromigration, which can be ignored. In addition, the electromigration resistance of Cu is generally better than that of Ag, as Cu is an exceptional high-density integrated circuit conductor material.
Key words:  electromigration    interconnection line    atomic diffusion flux divergence    temperature effect    material effect
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TN405.97  
基金资助: 国家重点研发计划项目(2019YFF0217402);国家自然科学基金委青年项目(51805115)
通讯作者:  hithepeng@hit.edu.cn   
作者简介:  张墅野,哈尔滨工业大学先进焊接与连接国家重点实验室讲师。2012年7月本科毕业于哈尔滨工业大学电子封装与技术专业。目前担任IMAPS国际电子封装学会Journal of Microelectronics and Electronic Packaging国际杂志副主编,IEEE可靠性技术委员会成员,2020年国际异构集成路线图成员. 主要从事柔性电子材料与封装可靠性的研究工作。以第一或通讯作者身份在IEEE Transactions on ComponentsPackaging and Manufacturing TechnologyMicroelectronics ReliabilityJournal of Materials Science: Materials in ElectronicsJournal of Alloys and Compounds等SCI/EI学术期刊发表研究论文40余篇,合著编写Lead Free SoldersHybrid Nanomaterials等学术专著。曾获得首届国际柔性电子学术会议最佳墙报奖、2019年河南省科学技术进步二等奖(6/6)和中国机械工业科学技术科技进步三等奖(3/6)。
何鹏,教授,工学博士,博士研究生导师。现任哈尔滨工业大学先进焊接与连接国家重点实验室主任、材料科学与工程学院副院长。国家第三批“万人计划”科技创新领军人才。2014年当选ISO国际焊接标准化委员会委员,国际焊接学会标准化委员会委员。主攻方向为新材料及异种材料连接界面行为及控制,针对异种材料连接界面强化、应力缓解等问题从接头及界面的微观设计入手,连接工艺及接头性能控制等关键技术,取得了一系列具有较高理论和应用价值的创新性研究成果。获国家科技进步奖二等奖1项,教育部自然科学奖一等奖1 项,黑龙江省科学技术奖一等奖1项、二等奖2 项,机械工业科学技术一等奖2项、二等奖2项,河南省科学技术奖一等奖2项、二等奖1项,浙江省科学技术三等奖1 项;发表或合作发表学术论文300余篇。
引用本文:    
张墅野, 鲍天宇, 修子扬, 何鹏. 三维封装电迁移Cu互连线的多物理场模拟仿真[J]. 材料导报, 2021, 35(2): 2133-2138.
ZHANG Shuye, BAO Tianyu, XIU Ziyang, HE Peng. Multi-physics Simulation of 3D Electromigration of Cu Interconnect. Materials Reports, 2021, 35(2): 2133-2138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060120  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2133
1 Jiang N, Zhang L, Xiong M Y, et al. Materials Reports A: Review Papers, 2019,33(12),3862(in Chinese).
姜楠,张亮,熊明月, 等. 材料导报:综述篇, 2019,33(12), 3862.
2 Zhao W. Modeling and characterization of novel interconnects for 3-D ICs. Ph.D Thesis, Zhejiang University, China, 2013 (in Chinese).
赵文生.三维集成电路中新型互连结构的建模方法与特性研究. 博士学位论文,浙江大学, 2013.
3 Zhang S, Xu X, Lin T, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(15), 13855.
4 Li S, Wang X, Liu Z, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(12), 9076.
5 Ma R, Su M Y, Liu X F, et al. Electronic Components and Materials, 2019,38(2),93(in Chinese).
马瑞,苏梅英,刘晓芳, 等.电子元件与材料,2019,38(2),93.
6 Jiang G H, Wang N, Zhao B. Micronanoelectronic Technology, 2015,52(8),477(in Chinese).
姜国华,王楠,赵波.微纳电子技术,2015,52(8),477.
7 Wang Q, Zhang S, Liu G, et al. Journal of Alloys and Compounds, 2020, 820, 153184.
8 Ren T. Current crowding for Cu interconnects. Master's Thesis, Shanghai Jiaotong University, China, 2007 (in Chinese).
任韬.铜互连中的电流拥挤效应研究. 硕士学位论文,上海交通大学, 2007.
9 Chee S, Tan F, Baraissov Z, et al. Nature Communications, 2017, 8(1), 1224.
10 Zhang P, Xue S, Wang J. Materials & Design, 2020, 192, 108726.
11 Tu K N, Liu Y. Materials Science and Engineering: R: Reports, 2019, 136, 1.
12 Huang M, Zhang Z, Zhao N, et al. Journal of Alloys and Compounds, 2015, 619, 667.
13 Zhang S, Yang M, Wu Y, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 383.
14 Huang M, Zhang Z, Zhou S, et al. Journal of Materials Research, 2014, 29(21), 2556.
15 Sun F, Wang J, Liu Y, et al. Journal of Harbin University of Science and Technology, 2012,17(3),1(in Chinese).
孙凤莲,王家兵,刘洋, 等.哈尔滨理工大学学报, 2012,17(3),1.
16 Chen C, Hsiao H, Chang Y, et al. Materials Science and Engineering: R: Reports, 2012, 73(9-10), 85.
17 Sun Z, Demircan E, Shroff M, et al. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(12), 3137.
18 Chen H, Tan S, Peng J, et al. IEEE Transactions on Device and Mate-rials Reliability, 2017, 17(4), 653.
19 Zhang J, Zhang Y, Wang J, et al. Electronic Components and Materials, 2018,37(9),9(in Chinese).
张继成,张元祥,王静, 等.电子元件与材料, 2018,37(9),9.
20 Kim Y, Zhang S, Paik K. Journal of the Microelectronics and Packaging Society, 2015, 22(1), 35.
20 Zhang S, Qi X, Yang M, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(10), 9171.
[1] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed