Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2125-2132    https://doi.org/10.11896/cldb.19110139
  金属与金属基复合材料 |
模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究
徐善华1, 宋翠梅1,2, 李晗1
1 西安建筑科技大学土木工程学院,西安 710055;
2 武汉正华建筑设计有限公司,武汉 430000
Difference in Surface Characteristics of Corroded Steel Under Simulated Marine and General Atmosphere Environment
XU Shanhua1, SONG Cuimei1,2, LI Han1
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 Wuhan Zhenghua Architectural Design Co., Ltd., Wuhan 430000, China
下载:  全 文 ( PDF ) ( 4553KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究海洋和一般大气环境下锈蚀钢材表面形貌的差异,开展了模拟两种环境下钢试件的加速腐蚀试验。采用非接触式三维形貌扫描仪PS50获得锈蚀钢材的表面形貌,并通过编程提取钢材表面的蚀坑参数,包括平均蚀坑深度h、平均蚀坑深宽比Ar、蚀坑密度Pd,以及粗糙度参数如均方根高度Sq、界面扩展面积比Sdr和分形维数D。通过分析以上各参数和测试区域非均匀体积损失率ξs之间的关系,得到了两种环境下锈蚀钢材表面形貌的演化规律及差异。结果表明,与模拟一般大气环境相比,模拟海洋大气环境下的试件具有更小的平均蚀坑深度h和更大的平均蚀坑深宽比Ar,蚀坑形状更加浅而窄;模拟海洋大气环境下试件的粗糙度参数SqSdrD均大于模拟一般大气环境下的试件,其表面具有更大的高度差异、褶皱面积和更显著的形貌幅值变化;模拟海洋大气环境下试件表面蚀坑分布集中,局部腐蚀更为显著;模拟一般大气环境下试件表面蚀坑分布分散,更偏向全面腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐善华
宋翠梅
李晗
关键词:  表面形貌  非均匀体积损失率  蚀坑分析  粗糙度参数    
Abstract: In order to investigate the difference in surface characteristics of corroded steel under simulated marine atmosphere and simulated general atmosphere environment, two accelerated corrosion tests were carried out. The corrosion morphology was obtained by a non-contact 3D profiler PS50. By extracting the average pit depth h, the average aspect ratio Ar, the pit density Pd and calculating the corrosion parameters such as the root mean square height Sq、the developed interfacial area ratio Sdr and the fractal dimension D, the evolution of corrosion and the environment effects were studied. The results show that compared with the specimens in the simulated general atmosphere environment, those in the simulated marine atmosphere environment have a smaller h and a larger Ar, which refers to shallower and narrower pits; the roughness parameters Sq, Sdr and D of the specimens in the simulated marine atmosphere environment are larger than those in the simulated general atmospheric environment, which means a greater height difference, fold area and more significant changes in topographic amplitude; the specimens in the simulated marine atmosphere environment have concentrated pits and local corrosion is significant while the specimens in the simulated general atmosphere environment have scattered pits and are more inclined to overall corrosion.
Key words:  surface morphology    non-uniform volume loss ratio    pit analysis    roughness parameter
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TU511  
基金资助: 国家自然科学基金(51678477)
通讯作者:  lihanxs@126.com   
作者简介:  徐善华,博士(后),教授,博士研究生导师,国家一级注册结构工程师,西安建筑科技大学结构工程学科学术带头人。主要从事混凝土结构与钢结构耐久性研究,主持国家自然科学基金面上项目4项,“十三五”国家重点研发计划项目1项,省部级科研项目10余项,中国博士后基金1项。参与编制国家标准规范3部,发表学术论文100余篇,参编著作2部。获国家科技进步二等奖1项,陕西省科学技术一等奖1 项、二等奖1项、三等奖1项、陕西省教育厅科学技术一等奖2项、二等奖1项。
李晗,西安建筑科技大学土木工程学院结构工程专业博士研究生,主要涉及锈蚀钢材表面评价、CFRP加固锈损钢结构以及CFRP-钢加固体系耐久性等领域。
引用本文:    
徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
XU Shanhua, SONG Cuimei, LI Han. Difference in Surface Characteristics of Corroded Steel Under Simulated Marine and General Atmosphere Environment. Materials Reports, 2021, 35(2): 2125-2132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110139  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2125
1 He S H, Song Y F, Li B S, et al. Journal of Xi'an Highway University, 1997(3),45 (in Chinese).
贺栓海, 宋一凡, 黎宝松,等. 西安公路交通大学学报, 1997(3), 45.
2 Wu H X, Huang T, Huang Z H. Jiangxi Metallurgy, 2005, 25(2), 21(in Chinese).
吴华新, 黄涛, 黄增红.江西冶金, 2005, 25(2), 21.
3 Xu X P, Huang D S, Li J Z. China Offshore Platform, 2001, 16(3),39(in Chinese).
徐兴平, 黄东升, 李继志.中国海洋平台, 2001,16(3), 39.
4 Qin G C. The study of corrosion pits impact on steel stress concentration factor and fatigue damage. Master's Thesis, Xi'an University of Architecture and Technology, China, 2014(in Chinese).
秦广冲. 腐蚀坑对钢材应力集中系数及疲劳损伤影响研究. 硕士学位论文, 西安建筑科技大学, 2014.
5 Yang X H. Study on corrosion cumulative damage rules and the calendar life of aircraft structures. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2002(in Chinese).
杨晓华. 腐蚀累积损伤理论研究与飞机结构日历寿命分析. 硕士学位论文, 南京航空航天大学, 2002.
6 Wang X P, Wu Z Q. Physics, 1999, 28(6), 342(in Chinese).
王晓平, 吴自勤. 物理, 1999, 28(6), 342.
7 Li A B, Xu S H, Wang H, Zhang H F, Wang Y. Composite Structures, 2019, 220, 221.
8 Wang Y D. Deterioration and evaluation of seismic performance of corroded steel frames under general atmosphere. Ph.D. Thesis, Xi'an University of Architecture and Technology, China, 2018(in Chinese).
王友德. 一般大气环境下锈损钢框架抗震性能退化与评定. 博士学位论文,西安建筑科技大学, 2018.
9 Li A B, Xu S H. Materials Review B: Research Papers, 2019, 33(10), 3502(in Chinese).
李安邦,徐善华.材料导报:研究篇, 2019, 33(10), 3502.
10 Sheng J. Study on surface characteristics and mechanical properties of corroded H steel beam under coupling action of load and underground environment. Ph.D. Thesis, China University of Mining and Technology, China, 2017(in Chinese).
盛杰. 荷载与地下环境耦合作用下H型钢梁锈蚀特征及力学性能研究. 博士学位论文,中国矿业大学, 2017.
11 Corrosion of metals and alloys-Accelerated testing involving cyclic exposure to salt mist,“dry” and “wet” condition:GB/T 20854-2007. Standards Press of China, 2007(in Chinese).
金属和合金的腐蚀循环暴露在盐雾、“干”和“湿”条件下的加速试验:GB/T 20854-2007. 中国标准出版社, 2007.
12 Corrosion of metals and alloys, Outdoors Exposure Test Methods for Perio-dic Water Spray: GB/T 24517-2009. Standards Press of China, 2009(in Chinese).
金属和合金的腐蚀 户外周期喷淋暴露试验方法:GB/T 24517-2009. 中国标准出版社,2009.
13 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens: GB/T 16545-2015. Standards Press of China, 2015(in Chinese).
金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除:GB/T 16545-2015. 中国标准出版社,2015.
14 Xu S H, Wang Y D. International Journal of Fatigue, 2015, 72, 27.
15 Tanuma Atsuro, Matsuoka Toshiyuki, Sugai Masaya, et al. 電気学会研究会資料. MSS,マイクロマシン·センサシステム研究会, 2006, 28, 21.
16 Xu S H, Wang Y D, Xue Q F. Journal of Harbin Institute of Technology, 2015, 22(3), 15.
17 Codaro E N, Nakazato R Z, Horovistiz A L, et al. Materials Science & Engineering A, 2002, 334(1), 202.
18 Mandelbrot, Benoit B. Nature, 1984, 308(5961), 721.
19 Tang H P. Powder Technology, 2012, 217(2), 383.
20 Costa J M, Sagués F, Vilarrasa M. Corrosion Science, 1991, 32(5), 1.
21 Lin J H, Ren C Q, Liu L, et al. Materials Review, 2013, 50(2), 228.
22 Li J, Sun C X. Pattern Recognition, 2009, 42(11), 2460.
23 Sun X, Wu Z Q, Huang Y. Fractal theory and its applications, Press of University of Science and Technology of China, China, 2003(in Chinese).
孙霞,吴自勤,黄畇.分形原理及其应用,中国科学技术大学出版社, 2003.
24 Geometrical product specifications (GPS)-surface texture: areal-part 2: terms, definitions and surface texture parameters. International Organization of Standardization:ISO 25178-2, Geneva, 2012.
25 Wang Y W, Wu X Y, Zhang Y H, et al. Journal of Ship Mechanics, 2007(5), 735(in Chinese).
王燕舞,吴晓源,张雨华,黄小平,崔维成. 船舶力学, 2007(5), 735.
[1] 刘鹏飞, 王思捷, 殷凤仕, 单腾, 乔玉林. 2024铝合金表面激光除漆工艺及机理[J]. 材料导报, 2020, 34(24): 24121-24126.
[2] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[3] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[4] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[5] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[6] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[7] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[8] 张成光,张 勇,张飞虎. 电化学射流加工的电场仿真及实验研究[J]. 《材料导报》期刊社, 2017, 31(24): 191-199.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed