Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21040295-8    https://doi.org/10.11896/cldb.21040295
  金属与金属基复合材料 |
超声增材制造在航空航天领域的应用进展
刘婷1, 朱宇1, 胡晓1, 张松2,*
1 中国航空发动机研究院,北京 101300
2 清华大学航空发动机研究院,北京 100084
Advances in the Research of Ultrasonic Additive Manufacturing in Aerospace Field
LIU Ting1, ZHU Yu1, HU Xiao1, ZHANG Song2,*
1 Aero Engine Academy of China(AEAC), Beijing 101300, China
2 Institute for Aero Engine, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 5151KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属超声增材制造是一种低温、固态的加工技术,其原理是在近室温环境中通过超声波振动在金属带材之间建立冶金结合,制造过程中金属不会熔化。利用超声增材与机械加工相结合的技术能够制备出精细的内外部结构。然而,超声增材层间结合机理仍在不断研究中,层间界面微结构和结合质量与工艺参数间的关系不清晰,使得界面处容易发生失效,加之目前应用的材料体系范围有限,导致超声增材的应用受到极大限制。因此,国内外的工作主要集中在以下四个方面:(1)层间结合机理研究; (2)超声固结工艺参数优化及建模; (3)异种材料结合特性研究; (4)支撑材料研究。
现有研究表明,塑性成形是层间结合的主要驱动力,而加工过程中界面处的晶粒破碎以及动态疲劳破坏会导致层间结合变弱; 利用试验和数值模拟研究,明确了振动振幅、焊接速度、下压力和固结宽/高比是影响结合强度的重要工艺参数,通过建立不同材料的工艺窗口,可指导实际加工过程; 钛、铝、铜、不锈钢等面心立方体金属之间具有好的结合强度,而对非面心立方体材料而言Al1100和Al3003是理想的结合材料,在铝合金基材中嵌入SiC纤维和NiTi形状记忆合金时,其结合强度主要受振动振幅、速度、下压力、基体预热温度以及嵌入纤维方向等过程变量的影响; 对于支撑材料,选择坚硬且熔点高于焊接温度的支撑材料更容易获得高质量的结构件,如无铅焊料等。与此同时,金属超声增材在航空航天领域的应用探索也在同步开展,已实现的典型应用包括高效换热器、电子元器件植入和表面修复等。
本文介绍了超声增材制造技术的基本过程及原理,综述了国内外关于该技术的研究现状,总结了该技术在航空航天领域的应用情况,分析了未来的发展趋势,旨在进一步拓展金属超声增材制造技术在航空航天领域的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘婷
朱宇
胡晓
张松
关键词:  超声增材制造技术  复合材料  低温加工  航空航天    
Abstract: Ultrasonic additive manufacture is a kind of low-temperature and solid-state process, the principle of which isproducing metallurgical bonds under ultrasonic vibration between metal layers near room temperature. Melting does not appear in the process. Complex internal or external structures can be fabricated after combining the subtractive machining with the additive process. However, the bonding mechanisms between metal layers in ultrasonic additive manufacture are just now being elucidated, and the relationship between process parameters and interface microstructures and bonding qualities is still uncertain, which is prone to failure at interfaces. Besides, there are limited kinds of materials that can be applied in the ultrasonic additive manufacture process, which prevents its application in the aerospace field. To sum up, researches at home and abroad are mainly focused on the following four parts: (i) bonding mechanisms;(ii) process parameters optimization and modeling;(iii) bonding characteristics of dissimilar materials;(iv) support materials.
Previous studies show that bonds between metal layers are mainly resulted from the plastic deformation, while the crystal broken and dynamic fatigue failure around the interfaces in the process will result in the poor bonding quality. Experimental and simulation researches indicate that amplitudes, speed, downforce, and aspect ratio of deposited metal layers are main factors affecting the bonding qualities. Actual machining process can be better conducted by constructing the process windows for different materials. Studies of the microstructure characteristics at bonding interfaces between dissimilar materials show that better bonding qualities can be obtained between the FCC structure, i.e. titanic, aluminum, copper, stainless steel, et. al, while Al 1100 and Al 3003 are applied to non-FCC materials. The bonding strength of aluminum alloy embedded SiC fiber or NiTi shape memory wires will be largely influenced by the amplitudes, speed, downforce, substrate preheating temperature and directions of fibers in the matrix. As to support materials, those which are hard and cannot melt in the process are considered to lead to better bonding quality, such as lead-free solder. Meanwhile, exploration for the application of ultrasonic additive manufacturing process in aerospace are conducted. Typical cases including efficient heat exchanger, embedded electronic component and surface repair have been implemented.
This paper introduces the basic processes and principles of ultrasonic additive manufacturing process. The research statuses of this technology are reviewed subsequently, while its applications in the aerospace field are summarized. Future work or development trends of ultrasonic additive manufacture in aerospace are analyzed, which are intended to further extend applied realms of this technology.
Key words:  ultrasonic additive manufacture    composite    low-temperature process    aerospace
发布日期:  2023-02-08
ZTFLH:  V261.92  
通讯作者:  *张松,2011年6月毕业于北京科技大学获学士学位, 2015年6月毕业于清华大学获工学博士学位。现为清华大学航空发动机研究院助理研究员。主要研究领域为超声增材制造与嵌入式传感器技术,发表SCI/EI论文15篇,著作1项,会议邀请报告1项,提交专利申请7项(4项授权)。   
作者简介:  刘婷,2012年6月毕业于北京理工大学获学士学位,2017年6月毕业于清华大学获工学博士学位。现为中国航空发动机研究院仿真技术研究中心工程师。主要研究领域为航空发动机制造工艺仿真技术研究及软件研发。
引用本文:    
刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
LIU Ting, ZHU Yu, HU Xiao, ZHANG Song. Advances in the Research of Ultrasonic Additive Manufacturing in Aerospace Field. Materials Reports, 2023, 37(2): 21040295-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040295  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21040295
1 Huang Q S, Li L Q, Gao B B. Defense Manufacturing Technology, 2012(5), 26 (in Chinese).
黄秋实, 李良琦, 高彬彬. 国防制造技术, 2012(5), 26.
2 Lyu Y X. Fine and Specialty Chemicals, 2014, 22(11), 14 (in Chinese).
吕延晓. 精细与专用化学品, 2014, 22(11), 14.
3 Wang H M, Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2690 (in Chinese).
王华明. 航空学报, 2014, 35(10), 2690.
4 Yin Y G, Bai P K, Liu B. Powder Metallurgy Technology, 2006(2), 142 (in Chinese).
尹贻国, 白培康, 刘斌. 粉末冶金技术, 2006(2), 142.
5 White D. Advanced Materials and Processes, 2003, 161(1), 64.
6 Graff K F, Short M, Norfolk M. In: International Sold Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin, 2010, pp. 362.
7 Fujii H T, Shimizu S, Sato Y S, et al. Scripta Materialia, 2017, 135, 125 .
8 Fujii H T, Sriraman M R, Babu S S. Metallurgical & Materials Transactions A, 2011, 42A(13), 4045.
9 Truog A S R, Babu S. In: ASM Proceedings of the International Confe-rence: Trends in Welding Research. Chicago IL, 2013.
10 Wolcott P J, Hehr A, Dapino M J. Journal of Materials Research, 2014, 29(17), 2055.
11 Wolcott P J, Hehr A, Pawlowski C, et al. Journal of Materials Processing Technology, 2016, 233, 44.
12 Schick D E, Babu S S, Lippold J C, et al. Welding Journal, 2010, 89(5), 105S.
13 Schick D, Babu S S, Foster D R, et al. Rapid Prototyping Journal, 2011, 17(5), 369.
14 Dehoff R R, Babu S S. Acta Materialia, 2010, 58(13), 4305.
15 Wolcott P J, Dapino M. In: 23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2012. Austin, 2012, pp. 428.
16 He X H, Shi H J, Zhang Y D, et al. Materials Letters, 2013, 112, 47.
17 Johnson K H R, Dickens P, West G, Gupta A. In: Materials Science and Technology Conference and Exhibition, MS and T′07-′Exploring Structure, Processing, and Applications Across Multiple Materials Systems′. Detroit, 2007, pp.2618.
18 Johnson K E H, Higginson R, Harris R. Proceedings of the Institution of Mechanical Engineers, Part L: Jorunal of Materials: Design and Applications, 2011, 225(4), 277.
19 Friel R H R. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224(1), 31.
20 Mariani E, Ghassemieh E. Acta Materialia, 2010, 58(7), 2492.
21 Shimizu S, Fujii H T, Sato Y S, et al. Acta Materialia, 2014, 74, 234.
22 Sriraman M R, Babu A, Short M. Scripta Materialia, 2010, 62(8), 560.
23 Sriraman M F H, Gonser M. In: Proceedings of the Twenty First International Solid Freeform Fabrication Symposium. University of Texas, Austin, 2010.
24 Johnson K. Interlaminar Subgrain Refinement in Ultrasonic Consolidation. Ph. D. Thesis, Olivet Nazarene University, USA, 2008.
25 Sojiphan K S M, Babu S. In: Proceedings of the Twenty Second Annual International Solid Freeform Fabrication Symposium. University of Texas, Austin, 2010.
26 Zhang C L L. Welding Journal, 2008, 87(7), 187.
27 Zhang C S, Li L. Metallurgical & Materials Transactions B, 2009, 40(2), 196.
28 Siddiq A G E. Journal of Manufacturing Science and Engineering, 2009, 131(4), 041007.
29 Pal D S B E. Virtual and Physical Prototyping, 2012, 7(1), 65.
30 Pal D, Stucker B. Journal of Applied Physics, 2013, 113(20), 64.
31 Hehr A, Norfolk M. Rapid Prototyping Journal, 2019, 26(3), 445.
32 Friel R J, Harris R A. In: Twenty Third International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin, 2012, pp. 354.
33 Kong C Y, Soar R C, Dickens P M. Materials Science & Engineering A, 2003, 363, 99.
34 Kong C Y, Soar R C, Dickens P M. Journal of Materials Processing Technology, 2004, 146(2), 181.
35 Kong C S R, Dickens P. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219(1), 83.
36 Wolcott P J, Sridharan N, Babu S S, et al. Science and Technology of Welding and Joining, 2016, 21(2), 114.
37 Ram G, Yang Y, Stucker B E. Journal of Manufacturing Systems, 2006, 25(3), 221.
38 Robert B T. Journal of Manufacturing Processes, 2007, 9(2), 87.
39 George J S B. Virtual and Physical Prototyping, 2006, 1(4), 227.
40 Sang J, Wang B, Zhu X M, et al. Materials Reports B:Research Papers, 2018, 32(9), 104 (in Chinese).
桑健, 王波, 朱训明, 等. 材料导报:研究篇, 2018, 32(9), 104.
41 Kelly G S, Advani S G, Gillespie J W, et al. Journal of Materials Processing Technology, 2013, 213(11), 1835.
42 Kelly G S, Just M S, Advani S G, et al. Journal of Materials Processing Technology, 2014, 214(8), 1665.
43 Kelly G A S, Gillespie J. International Journal of Advanced Manufacturing Technology, 2015, 79(9-12), 1931.
44 Zhang Song, Yi Dalong, Zhang Hui, et al. Rapid Prototyping Journal, 2015, 21(4), 461.
45 Song Z, Zheng L, Hui Z. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition IMECE2014. Montreal, 2014, pp. 37203.
46 Yi D, Zhang S, Zhang H, et al. Materials Science and Technology, 2017, 33(6), 744.
47 Robinson C J, Zhang C, Janaki G D, et al. In: International Solid Freeform Fabrication Symposium, Austin, 2006, pp. 502.
48 Zhang C S, Li L. Ultrasonics, 2010, 50(8), 811.
49 Gibert J M, Austin E M, Fadel G. Rapid Prototyping Journal, 2010, 16(4), 284.
50 Gibert J M, Mccullough D T, Fadel G M, et al. In: 23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin, 2012, pp. 385.
51 Ram G, Robinson C, Yang Y, et al. Rapid Prototyping Journal, 2007, 13(4), 226.
52 Adams B N C, Aydelotte B, Ahmadi S, et al. Acta Materialia, 2008, 56(1), 128.
53 Bourell D, Obielodan J O, Ceylan A, et al. Rapid Prototyping Journal, 2010, 16(3), 180.
54 Obielodan J, Stucker B. International Journal of Advanced Manufacturing Technology, 2014, 70(1-4), 277.
55 Graff K D J, Keltos J, Zhou N, et al. Ch8: ultrasonic welding of metals, in AWS Welding Handbook, 2001.
56 Han Y J, Jiang B, Hou H L, et al. Chinese Journal of Rare Metals, 2020(6), 597 (in Chinese).
韩玉杰, 姜波, 侯红亮, 等. 稀有金属, 2020(6), 597.
57 Wang B, Zhang H T, Zhu X M, et al. Journal of Mechanical Engineering, 2018, 54(22), 95 (in Chinese).
王波, 张洪涛, 朱训明, 等. 机械工程学报, 2018, 54(22), 95.
58 https://fabrisonic. com/resources/.
59 Kong C Y, Soar R C, Dickens P M. Composite Structures, 2004, 66(1-4), 421.
60 Kong C Y, Soar R. Applied Optics, 2005, 44(30), 6325.
61 Kong C Y, Soar R C. Materials Science & Engineering A, 2005, 412(1-2), 12.
62 Hahnlen R, Dapino M J. Proc Spie, 2010, 7645, 15.
63 Hahnlen R, Dapino M J. Composites Part B, 2014, 59, 101.
64 Yang Y, Janaki R G D, Stucker B E. Journal of Engineering Materials and Technology, 2007, 129(4), 538.
65 Swank M S B. In: 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009. Austin TX, 2009.
66 Swank M S B, Medina F, Wicker R. In: 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009. Austin TX, 2009.
67 Gibert J M D, Fadel G, Johnson K. In: 23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2012. Austin TX, 2012.
68 https://fabrisonic. com/.
69 https://3dprint. com/220995/heat-exchanger-whitepaper/.
70 Hehr A, Norfolk M, Wenning J, et al. JOM: the Journal of the Minerals, Metals & Materials Society, 2018, 70(3), 315.
71 Schwope L A, Friel R J, Johnson K, et al. In: Meeting Proceedings RTO-MP-AVT-163-Additive Technology for Repair of Military Hardware. Bonn, 2009, pp. 22.
72 Guo H Q, Gingerich M B, Headings L M, et al. Composite Structures, 2019, 208, 180.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[3] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[4] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[5] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[6] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[7] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[8] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[9] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[10] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[11] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[12] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[13] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[14] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[15] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed