Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21110013-7    https://doi.org/10.11896/cldb.21110013
  金属与金属基复合材料 |
陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究
余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀*, 王新云
华中科技大学材料科学与工程学院,材料成形与模具技术国家重点实验室,武汉 430074
High-temperature Deformation Behavior of Zr-based Metallic Glass Matrix Composites Reinforced by Ceramic Particle
YU Guoqing, XU Yongkang, WANG Dongliang, NIU Yong, SI Mingda, ZHANG Mao, GONG Pan*, WANG Xinyun
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 11567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在非晶合金中添加第二相制备非晶合金复合材料能够有效地解决非晶合金室温脆性的问题,但第二相的引入对非晶基体高温变形行为造成的影响尚不明确。本研究在Zr55Cu30Al10Ni5非晶合金中添加两种不同的陶瓷颗粒Al2O3和Si3N4,通过放电等离子烧结法制备了一系列不同体积分数的陶瓷颗粒增强Zr基非晶合金复合材料。通过进行高温压缩试验,并建立多颗粒随机分布模型进行数值模拟,对其高温变形行为进行了系统性研究。结果表明,在421 ℃时,两种复合材料都表现为应力过冲后应变硬化;在441 ℃时,Al2O3增强的复合材料表现为屈服后应变硬化,对于Si3N4增强复合材料,当第二相体积分数小于25%时表现为屈服后应变硬化,当第二相体积分数大于25%时材料却表现为应力过冲后应变硬化。两种非晶合金复合材料的高温变形行为差异与增强相形貌以及增强相颗粒团聚行为导致的第二相分布不均匀有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余国卿
许永康
王东亮
牛勇
司明达
张茂
龚攀
王新云
关键词:  非晶合金复合材料  热塑性成形  高温变形行为  数值模拟    
Abstract: The problem of room-temperature brittleness of metallic glass can be effectively solved by adding a second phase to prepare metallic glass matrix composites. However, the effect of the introduction of a second phase on the high-temperature deformation behavior of the amorphous matrix is not clear. In this study, two different ceramic particles, Al2O3 and Si3N4, were added to Zr55Cu30Al10Ni5 metallic glass. A series of ceramic-particle reinforced Zr-based metallic glass matrix composites with different volume fractions were prepared using spark plasma sintering. The high-temperature deformation behavior was systematically studied through the high-temperature compression tests and the establishment of a multi-particle random distribution model for numerical simulation. The results show that both composites show strain hardening after stress overshoot at 421 ℃. Al2O3-reinforced composites show strain hardening after yield at 441 ℃. For Si3N4-reinforced composites, when the volume fraction of the second phase is less than 25%, it show strain hardening after yield. When the volume fraction of the second phase is greater than 25%, the material shows strain hardening after stress overshoot. The difference in high-temperature deformation behavior between the two metallic glass matrix composites is related to the morphology of the reinforcing phase and the uneven distribution of reinforcing phase due to the agglomeration behavior.
Key words:  metallic glass matrix composites    thermoplastic forming    high-temperature deformation behavior    numerical simulation
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG139.8  
基金资助: 国家自然科学基金(51601063);中央高校基本科研业务费(2018KFYRCPT001)
通讯作者:  * 龚攀,副教授,硕士研究生导师。2006年7月毕业于华中科技大学,获工学学士学位,2013年7月毕业于清华大学,获工学博士学位。2014年—2016年在美国耶鲁大学进行博士后研究。主要从事非晶合金、高熵合金及金属塑性成形工艺方面的工作,发表SCI论文60余篇,获授权中国发明专利20余项。pangong@hust.edu.cn   
作者简介:  余国卿,2020年6月毕业于华中科技大学,获得工学学士学位。现为华中科技大学材料科学与工程学院硕士研究生,在龚攀副教授的指导下进行研究。目前主要研究领域为非晶合金复合材料的热塑性成形。
引用本文:    
余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
YU Guoqing, XU Yongkang, WANG Dongliang, NIU Yong, SI Mingda, ZHANG Mao, GONG Pan, WANG Xinyun. High-temperature Deformation Behavior of Zr-based Metallic Glass Matrix Composites Reinforced by Ceramic Particle. Materials Reports, 2023, 37(1): 21110013-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110013  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21110013
1 Wang F L, Yang Y J, Lyu J W, et al. Special-cast and Non-ferrous Alloys, 2020, 40(3), 253(in Chinese).
王飞龙, 杨玉婧, 吕敬旺, 等. 特种铸造及有色合金, 2020, 40(3), 253.
2 Wang W H. Progress in Materials Science, 2012, 57(3), 487.
3 Zheng Y F, Gu X N, Witte F. Materials Science and Engineering R: Reports, 2014, 77, 1.
4 Rajan S T, Arockiarajan A. Journal of Alloys and Compounds, 2021, 876, 159939.
5 Ding H P, Gong P, Yao K F, et al. Materials Reports A:Review Papers, 2020, 34(2), 133(in Chinese).
丁华平, 龚攀, 姚可夫, 等. 材料导报:综述篇, 2020, 34(2), 133.
6 Gong P, Yu G Q, Ding H P, et al. Forging and Stamping Technology, 2021, 46(9), 43(in Chinese).
龚攀, 余国卿, 丁华平, 等. 锻压技术, 2021, 46(9), 43.
7 Khan M M, Nemati A, Rahman Z U, et al. Critical Reviews in Solid State and Materials Sciences, 2018, 43(3), 233.
8 Dong J, Wang Y T, Hu J, et al. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2), 379(in Chinese).
董杰, 王雨田, 胡晶, 等. 力学学报, 2020, 52(2), 379.
9 Qiao J, Jia H, Liaw P K. Materials Science and Engineering R: Reports, 2016, 100, 1.
10 Ding H P, Zhao Z K, Jin J S, et al. Journal of Alloys and Compounds, 2021, 850, 156724.
11 Liu J M, Yuan X G, Zhang H F, et al. Journal of Shenyang University of Technology, 2010, 32(2), 157(in Chinese).
刘金民, 袁晓光, 张海峰, 等. 沈阳工业大学学报, 2010, 32(2), 157.
12 Cao X M, Jin P, Xu Y C, et al. Acta Materiae Compositae Sinica, 2022, 39(4), 1777(in Chinese).
曹小明, 金鹏, 徐奕辰, 等. 复合材料学报, 2022, 39(4), 1777.
13 Zhang L, Narayan R L, Sun B A, et al. Physical Review Letters, 2020, 125, 0555015.
14 Liu X, Chen Y, Dai L. Scientia Sinica-physica Mechanica & Astronomica, 2020, 50, 0670066.
15 Ma J, Yang C, Gong F, et al. Acta Physica Sinica, 2017, 66(17), 251(in Chinese).
马将, 杨灿, 龚峰, 等. 物理学报, 2017, 66(17), 251.
16 Cui J, Li J, Wang J, et al. Materials & Design, 2016, 90, 595.
17 Wu L, Zhu Z, Liu D, et al. Journal of Materials Science & Technology, 2020, 37, 64.
18 Hong S H, Kim J T, Mun S C, et al. Intermetallics, 2017, 91, 90.
19 Ma D Q, Yuan S Q, Ma X Z, et al. Journal of Alloys and Compounds, 2018, 768, 415.
20 Li J B, Zhang H Z, Jang J S C, et al. Journal of Alloys and Compounds, 2012, 5361, S165.
21 Singh P S, Narayan R L, Sen I, et al. Materials Science and Engineering: A, 2012, 534, 476.
22 Wang Y S, Linghu R K, Liu Y Y, et al. Journal of Alloys and Compounds, 2018, 751, 391.
23 Ma Y F. Study of tungsten particle reinforced Zr based bulk metallic glass composites preparation and properties. Master’s Thesis, Huazhong University of Science and Technology, China, 2019(in Chinese).
马云飞. 钨颗粒增强锆基非晶合金复合材料的制备与性能研究. 硕士学位论文, 华中科技大学, 2019.
24 Xu Y K, Ding H P, Chen J, et al. Journal of Netshape Forming Engineering, 2020, 12(6), 77(in Chinese).
许永康, 丁华平, 陈骥, 等. 精密成形工程, 2020, 12(6), 77.
25 Wang Y S, Linghu R K, Zhang W, et al. Journal of Alloys and Compounds, 2020, 844, 155761.
26 Chen Q, Liu L, Chan K C. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(4), 349.
27 Chen G, Hao Y, Chen X, et al. International Journal of Impact Engineering, 2017, 106, 110.
28 Ma G, Zhu Z, Wang Z, et al. Journal of Materials Science & Technology, 2015, 31(9), 941.
29 Bai J, Kou H C, Wang J, et al. Materials Letters, 2014, 117, 228.
30 Shin D W, Min H, Lee J K. Korean Journal of Metals and Materials, 2021, 59(5), 281.
31 Ding H P, Zhao Z K, Jin J S, et al. Journal of Alloys and Compounds, 2021, 850, 156724.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[4] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[5] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[6] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[7] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[8] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[9] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[10] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[11] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[12] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[13] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[14] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[15] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed