Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20110045-8    https://doi.org/10.11896/cldb.20110045
  无机非金属及其复合材料 |
FRP约束混凝土关键问题综述
相泽辉1,2, 王俊1, 牛建刚1,*, 周杰1
1 内蒙古科技大学土木工程学院,内蒙古 包头 014010
2 内蒙古耐恒工程科技有限责任公司,内蒙古 包头 014010
Review of Key Issues in FRP-confined Concrete
XIANG Zehui1,2, WANG Jun1, NIU Jiangang1,*, ZHOU Jie1
1 Department of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia,China
2 Inner Mongolia Naiheng Engineering Technology Co., Ltd., Baotou 014010, Inner Mongolia,China
下载:  全 文 ( PDF ) ( 3534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文从国内外文献中选取了29个纤维布(FRP)约束混凝土峰值应力模型和19个峰值应变模型,并依据诸多同行研究结果中的相关实测数据,对上述模型的精度进行了验证。结果表明,这些模型对强约束构件的预测精度不足,在此基础上,我们通过分段拟合得到了精度较优且较为简洁的峰值应力及应变模型。同时,基于文献数据,我们对影响环向约束力的FRP弹性模量及撕裂应变这两个因素进行了探讨。我们认为:(1)相较于低弹性模量,高弹性模量FRP可延缓混凝土损伤,进而提高核心区混凝土的力学性能;(2)导致FRP撕裂应变降低的原因包括施工扰动、受力差异及材质非均质性;(3)对于碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRG),撕裂应变有效系数分别取0.723、0.774和0.774。本文旨在为FRP约束拓展运用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
相泽辉
王俊
牛建刚
周杰
关键词:  纤维增强复合材料  峰值应力模型  峰值应变模型  撕裂应变  本构模型    
Abstract: In this paper, we performed an international literature review of fiber reinforced polymer (FRP) concrete. 29 peak stress models and 19 peak strain models of FRP-confined concrete were selected, and the accuracy of the models was verified according to the relevant measured data from peer-reviewed data. The results show that the prediction accuracy of these models for the strongly-confined concrete is inadequate. Therefore, we offer a relatively simple peak stress and strain model with better accuracy by piecewise fitting. Based on the literature, the two factors that affect the radial constraint force are elastic modulus of FRP and rupture strain. We suggest that :(1) compared with low elastic modulus FRP, high elastic modulus FRP can delay the damage of concrete and improve the mechanical properties of concrete in the core zone, (2) construction disturbance, stress difference and material heterogeneity decrease FRP rupture strain, (3) for carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), and aramid fiber reinforced polymer (AFRP), the effective coefficient of rupture strains are 0.723, 0.774, and 0.774, respectively. The purpose of this paper is to provide reference for the extended application of FRP-confined concrete.
Key words:  fiber reinforced polymer    peak stress model    peak strain model    rupture stain    constitutive iteration
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51968058);内蒙古自然区人才开发基金;内蒙古自治区青年科技英才支持计划( NJYT-18-A06);内蒙古自治区自然科学基金(2021MS05012);内蒙古科技大学建筑科学研究所开放基金项目(JYSJJ-2021M16)
通讯作者:  * 牛建刚,博士,教授,硕士研究生导师,主要研究方向为纤维轻骨料混凝土、混凝土结构耐久性及建筑结构可持续发展,已主持3项国家自然科学基金。近些年共发表论文40余篇,其中被EI及SCI收录17篇。niujiangang@imust.edu.cn   
作者简介:  相泽辉,于2016年6月在西安建筑科技大学土木工程学院获得结构工程硕士学位。于2019年4月至今在内蒙古科技大学土木工程学院从事科研工作,近些年共发表论文10余篇,其中被EI收录3篇,被SCI收录6篇,主要研究方向为混凝土结构耐久性、FRP约束混凝土。
引用本文:    
相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
XIANG Zehui, WANG Jun, NIU Jiangang, ZHOU Jie. Review of Key Issues in FRP-confined Concrete. Materials Reports, 2023, 37(1): 20110045-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110045  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20110045
1 Richart F E, Brandtzæg A, Brown R L. A study of the failure of concrete under combined compressive stresses. Ph.D.Thesis, University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, America, 1928.
2 Mander J B, Priestley M J N, Park R, et al. Journal of Structural Engineering, 1988, 114(8), 1804.
3 Yu T, Lin G, Zhang S S, et al. Composite Structures, 2016, 154(154), 493.
4 Zhang B, Feng G S, Wei W, et al. Journal of Building Structures, 2019, 40(S1), 185(in Chinese).
张冰, 冯贵森, 魏威, 等. 建筑结构学报, 2019, 40(S1), 185.
5 Xiang Z H, Niu J G, Wang M Y, et al. Journal of Building Structures, 2020, 41(S1), 154(in Chinese).
相泽辉, 牛建刚, 王梦雨, 等. 建筑结构学报, 2020, 41(S1), 154.
6 Bazli M, Bazli L, Rahmani R, et al. Journal of Composites and Compounds, 2020, 2(4), 155.
7 Hu L, Feng P, Lin H, et al. Composite Structures, 2020, 257, 113126.
8 Zhou Y, Liu X, Xing F, et al. Construction and Building Materials, 2016, 119, 1.
9 Zhang T, Niu D, Rong C. Construction and Building Materials, 2019, 218, 206.
10 Lam L, Teng J G. Construction and Building Materials, 2003, 17(6-7), 471.
11 Jiang T, Teng J G. Engineering Structures, 2007, 29(11), 2968.
12 Amir M, Aashish S, Giorgio M. Journal of composites for construction, 2001, 5(1), 62.
13 Karbhari V M. Journal of Thermoplastic Composite Materials, 1993, 6(2), 92.
14 Mirmiran A. Analytical and experimental investigation of reinforced concrete columns encased in fibre glass tubular jackets and use of fiber jacket for pile splicing WPI 0510700, 1997.
15 Karbhari V M, Gao Y. Journal of Materials in Civil Engineering, 1997, 9(4), 185.
16 Miyauchi K, Nishibayashi S, Inoue S. In: 3rd Int. Symp. of Non-metallic Reinforcement for Concrete Structures. Japan, 1997, pp.217.
17 Michel S, Amir M, Mohsen S. Journal of Structural Engineering, 1998, 124(9), 1025.
18 Miyauchi K, Inoue S, Kuroda T, et al. Proceedings of the Japan Concrete Institute, 1999, 21(3), 1453.
19 Mohamed S, Houssam T, Zongjin L. Materials Journal, 1999, 96(4), 500.
20 Toutanji H. Materials Journal, 1999, 96(3), 397.
21 Salim R, Murat S. Journal of Structural Engineering, 1999, 125(3), 281.
22 Lam L, Teng J G. Journal of Structural Engineering, 2002, 128(5), 612.
23 Ilki A, Kumbasar N, Koc V. In: Proc. ASCE 15th Engineering Mecha-nics Conference. New York, 2002.
24 Domingo A M, Chris P P. Journal of Composites for Construction, 2002, 6(4), 224.
25 Shehata I A, Carneiro L A, Shehata L D, et al. Materials and Structures, 2002, 35(1), 50.
26 Ilki A, Kumbasar N, Koc V, et al. Structural Engineering and Mechanics, 2004, 18(2), 167.
27 Bisby L A, Dent A J, Green M F. ACI Structural Journal, 2005, 102(1), 62.
28 Matthys S, Toutanji H, Audenaert K, et al. ACI Structural Journal, 2005, 102(2), 258.
29 Al-tersawy S H, Hodhod O A, Hefnawy A A. In: Proceedings, Eighth International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece, 2007, pp. 122.
30 Ciupala M A, Pilakoutas K, Mortazavi A A, et al. A. In: Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece, 2007, pp. 252.
31 Vintzileou E, Panagiotidou E. Construction and Building Materials, 2008, 22(5), 841.
32 Kumutha R, Vaidyanathan R, Palanichamy M S, et al. Cement & Concrete Composites, 2007, 29(8), 609.
33 Wu Y, Wang L. Journal of Structural Engineering-Asce, 2009, 135(3), 253.
34 Benzaid R, Mesbah H A, Chikh N, et al. Journal of Reinforced Plastics and Composites, 2010, 29(16), 2469.
35 Wu Y, Zhou Y. Journal of Composites for Construction, 2010, 14(2), 175.
36 Fardis M N, Khalili H. Magazine of Concrete Research, 1982, 34(121), 191.
37 De Lorenzis L, Tepfers R. Journal of Composites for Construction, 2003, 7(3), 219-23.
38 Campione G, Miraglia N. Cement & Concrete Composites, 2003, 25(1), 31.
39 Candappa D C, Sanjayan J G, Setunge S, et al. Journal of Materials in Civil Engineering, 2001, 13(3), 209.
40 Hammons M I, Neeley B D. Transportation Research Record, 1993, 1382(2), 73.
41 Hurlbut B J. Experimental and computational investigation of strain-softening in concrete. Ph. D. Thesis. University of Colorado, USA, 1985.
42 Imran I. Applications of non-associated plasticity in modeling the mecha-nical response of concrete. Ph. D. Thesis, Department of Civil Enginee-ring, University of Toronto, Canada, 1994.
43 Imran I, Pantazopoulou S J. ACI Materials Journal, 1996, 93(6), 589.
44 Ansari F, Li Q. ACI Materials Journal, 1998, 95(6), 747.
45 Attard M M, Setunge S. Materials Journal, 1996, 93(5), 432.
46 Bellotti R, Rossi P. Materials and Structures, 1991, 24(1), 45.
47 Jamet P, Millard A, Nahas G. In: CEA Centre d’Etudes Nucleaires de Saclay. Toulouse, 1984, pp. 133.
48 Kotsovos M D, Newman J B. Journal of Engineering Mechanics-asce, 1978, 104(4), 845.
49 Newman J B. Chapter, 1979, 5, 151.
50 Lahlou K, Aitcin P, Chaallal O, et al. Cement & Concrete Composites, 1992, 14(3), 185.
51 Lu X, Hsu C T. Journal of Materials in Civil Engineering, 2007, 19(3), 261.
52 Rutland C A, Wang M L. Cement & Concrete Composites, 1997, 19(2), 149.
53 Setunge S, Attard M M, Darvall P, et al. ACI Structural Journal, 1993, 90(6), 632.
54 Sfer D, Carol I, Gettu R, et al. Journal of Engineering Mechanics-ASCE, 2002, 128(2), 156.
55 Smith S S, Willam K J, Gerstle K H, et al. ACI Materials Journal, 1989, 86(5), 491.
56 Xie J, Elwi A E, MacGregor J G. Materials Journal, 1995, 92(2), 135.
57 Watanabe K, Nakamura H, Honda Y, et al. In: Non-Metallic(FRP) Reinforcement for Concrete Structures. Japan Concrete Institute. Procee-dings of the Third International Symposium. Japan, 1997, pp. 233.
58 Matthys S, Taerwe L, Audenaert K. Special Publication, 1999, 188, 217.
59 Xiao Y, Wu H. Journal of Materials in Civil Engineering, 2000, 12(2), 139.
60 De Lorenzis L, Micelli F, La Tegola A. In:Advanced Polymer Composites for Structural Applications in Construction: Proceedings of the First International Conference. 2002, pp. 231.
61 Howie I, Karbhari V M. In: Infrastructure: New Materials and Methods of Repair. ASCE. California, 1994, pp.199.
62 Harries K A, Kestner J, Pessiki S, et al. In: Second International Conference on Composites in Infrastructure National Science Foundation. Tucson, Arizona, 1998, pp. 411.
63 Matthys S, Taerwe L, Audenaert K. Special Publication, 1999, 188, 217.
64 Sachin K, Roberto A L, Rakesh K G. Materials Journal, 2000, 97(6), 703.
65 Rochette P, Labossiere P. Journal of Composites for Construction, 2000, 4(3), 129.
66 Zhang S, Ye L, Mai Y, et al. Applied Composite Materials, 2000, 7(2), 125.
67 Owen L M. Stress-strain behavior of concrete confined by carbon fiber jacketing. Ph. D. Thesis. University of Washington, USA, 1998.
68 Song X, Gu X, Li Y, et al. MechanicalJournal of Composites for Construction, 2013, 17(3), 336.
69 Vincent T, Ozbakkaloglu T. Composites Part B-Engineering, 2013, 50, 413.
70 Valdmanis V, De L L, Rousakis T C, et al. Structural Concrete, 2007, 8(4), 187.
71 Almusallam T H. Composites Part B-Engineering, 2007, 38(5), 629.
72 Cui C, Sheikh S A. Journal of Composites for Construction, 2010, 14(5), 553.
73 Lam L, Teng J G. Journal of Composites for Construction, 2004, 8(6), 539.
74 Silva M A, Rodrigues C C. Journal of Materials in Civil Engineering, 2006, 18(3), 334.
75 Ozbakkaloglu T, Akin E. Journal of Composites for Construction, 2012, 16(4), 451.
76 Vincent T, Ozbakkaloglu T. Construction and Building Materials, 2013, 47, 814.
77 Bullo S. In: Proceedings of the International Conference Composites in Construction. Cosenza, Italy, 2003, pp. 16.
78 Rousakis T, Tepfers R. Research Rep, 2001, 44, 1.
79 Pessiki S, Harries K A, Kestner J T, et al. Journal of Composites for Construction, 2001, 5(4), 237.
80 Chen J F, Li S Q, Bisby L, et al. Composites Part B-Engineering, 2011, 42(4), 962.
81 Smith S T, Kim S J, Zhang H, et al. Journal of Composites for Construction, 2010, 14(5), 573.
82 Hine P J, Duckett R A, Kaddour A S, et al. Composites Part A-Applied Science and Manufacturing, 2005, 36(2), 279.
83 Zinoviev P A, Tsvetkov S V. Composites Science and Technology, 1998, 58(1), 31.
84 Zinoviev P A, Tsvetkov S V, Kulish G G, et al. Composites Science and Technology, 2001, 61(8), 1151.
[1] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[2] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[3] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[4] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[5] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[6] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[7] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[8] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[9] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[10] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[11] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[12] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[13] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[14] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[15] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed