Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21030120-8    https://doi.org/10.11896/cldb.21030120
  高分子与聚合物基复合材料 |
纳米纤维素材料在重金属废水治理中的应用
陶正凯, 荆肇乾*, 王郑
南京林业大学土木工程学院,南京 210037
Application of Nanocellulose Materials for the Treatment of Wastewater Containing Heavy Metals
TAO Zhengkai, JING Zhaoqian*, WANG Zheng
School of Civil Engineering,Nanjing Forestry University,Nanjing 210037,China
下载:  全 文 ( PDF ) ( 6477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素是自然界中来源最广泛的天然高分子材料,近年来引起了能源、环境和材料等领域研究者的广泛关注。结合可再生生物质材料与纳米科技制备的纳米纤维素基重金属吸附材料具有可降解、可再生、环境相容性好、吸附量大、可选择性吸附等优势,是重金属治理技术重要的研究方向。
然而,天然纳米纤维素在水体中会存在大量由羟基形成的氢键,导致材料的吸附容量降低、特异性吸附能力削弱。为此,一方面可以在制备纳米纤维素吸附材料时通过化学改性、酶化处理等手段引入活性基团或金属氧化物,提高材料分散性、特异性吸附性能和吸附容量等。另一方面,可将纳米纤维素与天然矿物、有机材料、氧化石墨烯等复合,制备高性能复合材料。纳米纤维素材料的化学改性研究相对成熟,但是酶法处理研究仍然处于起步阶段,目前有限的研究主要关注特定酶处理的反应进程及产物,缺乏多重适应性和工程应用性分析。在实际应用中,纳米纤维素除了直接制备粉末吸附剂外,往往制备成凝胶材料、杂化或复合材料等,或者进一步加工成纳滤膜、滤纸和过滤器等净水材料。
基于此,本文从制备技术、吸附机理、改性强化和应用形式等角度简要介绍纳米纤维素基重金属吸附材料的最新研究进展,重点讨论纳米纤维素吸附材料的化学改性和酶法处理的改性机理、工艺路径和应用效果,分析纳米纤维素吸附材料的常见应用形式,结合纳米纤维素重金属吸附材料的研究现状展望其在重金属废水治理中的发展趋势,以期为纳米纤维素材料在重金属治理中的应用研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶正凯
荆肇乾
王郑
关键词:  重金属  纳米纤维素  吸附材料  改性  复合材料    
Abstract: Cellulose, which is the most widely found natural polymer material, has attracted significant attention in the fields of energy, environment and materials science. Nanocellulose-based heavy metal adsorbent materials, which are prepared by combining renewable biomass materials with nanotechnology, are degradable, regeneratable and environmentally friendly. In addition, they show high adsorption capacity and selective adsorption. Therefore, their synthesis has attracted significant research attention for heavy metal treatment technology.
However, for natural nanocellulose, a large number of hydrogen bonds are formed by hydroxyl groups in aqueous media, which reduce the adsorption and specific adsorption capacities of the material. Therefore, active groups or metal oxides are introduced during the preparation of nanocellulose-based adsorbent materials through chemical modification and enzymatic treatment, among other methods, to improve the dispersion, specific adsorption performance, and adsorption capacity of the materials. In contrast, high-performance composites can be obtained by compounding natural nanocellulose with natural minerals, organic materials, and graphene oxide. The chemical modification of nanocellulose materials has been investigated extensively; however, the enzymatic treatment has not been investigated in detail yet. Specifically, the limited stu-dies so far have focused on the reaction processes and products of specific enzymatic treatments; however, there is a lack of studies focusing on multiple adaptations and engineering applicability analysis. In practical applications, nanocellulose is often directly made into powder adsorbents; however, it is also prepared as gel, hybrid, or composite materials. In some cases, it is further processed into water purification materials, such as nanofiltration membranes, filter papers, and filters.
This paper briefly introduces the latest research progress in the field of nanocellulose-based heavy metal adsorbent materials from the viewpoints of preparation technology, adsorption mechanism, modification enhancement, and application form. This paper focuses on the modification mechanisms, process paths, and application performances of chemical modification and enzymatic treatment of nanocellulose-based adsorbent materials, and it analyzes the common application forms of these materials. Finally, based on the current status of research, this paper discusses the development trend of nanocellulose-based heavy metal adsorbent materials for the treatment of wastewater containing heavy metals to provide references for their applications for heavy metal removal.
Key words:  heavy metal    nanocellulose    adsorbent material    modification    composite material
发布日期:  2023-03-27
ZTFLH:  O636.9  
  X703  
基金资助: 国家科技支撑计划(2015BAL02B04);住房和城乡建设部科技项目(2015-K7-012); 江苏省高校优势学科(PAPD)
通讯作者:  *荆肇乾,南京林业大学土木工程学院教授、博士研究生导师。1997年获得山东建筑大学给水排水专业学士学位,于2003年、2006年分别获得东南大学环境工程专业硕士学位、博士学位。2012—2013年,任日本东北大学客员研究员。以第一作者/通信作者在Bioresource Technology、Science of the Total Environment、《环境科学学报》等国内外学术期刊上发表论文100余篇。主要从事水污染控制理论与技术研究。zqjing@njfu.edu.cn   
作者简介:  陶正凯,2018年6月毕业于南京林业大学,获得工学学士学位。现为南京林业大学土木工程学院硕士研究生,师从荆肇乾教授,主要研究领域为污废水深度处理技术。
引用本文:    
陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
TAO Zhengkai, JING Zhaoqian, WANG Zheng. Application of Nanocellulose Materials for the Treatment of Wastewater Containing Heavy Metals. Materials Reports, 2023, 37(6): 21030120-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030120  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21030120
1 He J, Shi D, Wang B B, et al.China Environmental Science, 2019, 39(7), 2970(in Chinese).
何佳, 时迪, 王贝贝, 等. 中国环境科学, 2019, 39(7), 2970.
2 Yu H, Wang J, Yu J X, et al.Environmental Science and Pollution Research, 2020, 27(21), 26502.
3 Omran A A B, Mohammed A A B A, Sapuan S M, et al.Polymers, 2021, 13(2), 231.
4 Bawaanii S, Irene M C, Nabisab M M, et al. Journal of Cleaner Production, 2019, 210, 697.
5 Anum J, Almas H, Nawshad M, et al.ChemBioEng Reviews, 2017, 4(4), 240.
6 Mishra S, Kharkar P S, Pethe A M.Carbohydrate Polymers, 2019, 207, 418.
7 Kian L K, Saba N, Jawaid M, et al.International Journal of Biological Macromolecules, 2020, 156, 347.
8 Ru J, Geng B Y, Tong C C, et al.Progress in Chemistry, 2017, 29(10), 1228(in Chinese).
茹静, 耿璧垚, 童聪聪, 等.化学进展, 2017, 29(10), 1228.
9 Nakagaito A N, Yano H.Applied Physics A, 2004, 78(4), 547.
10 Saito T, Nishiyama Y, Putaux J, et al.Biomacromolecules, 2006, 7(6), 1687.
11 Lee K, Tammelin T, Schulfter K, et al.ACS Applied Materials & Interfaces, 2012, 4(8), 4078.
12 Habibi Y. Chemical Society Reviews, 2014, 43(5), 1519.
13 Gonzalez I, Alcala M, Chinga C G, et al. Cellulose, 2014, 21(4), 2599.
14 Feng Q, Wu D S, Zhao Y, et al. Journal of Hazard Materials, 2018, (344), 819.
15 Ahmed A T, Wu Y N, Wang H T, et al. Journal of Environmental Ma-nagement, 2012, 112, 10.
16 Alizadehgiashi M, Khuu N, Khabibullin A, et al.ACS Nano, 2018, 12(8), 8160.
17 Anirudhan T S, Shainy F, Deepa J R.Chemistry and Ecology, 2019, 35(3), 235.
18 Sanna H, Amit B, Mika S.Water Research, 2016, 91, 156.
19 Voisin H, Bergstrom L, Liu P, et al.Nanomaterials, 2017, 7(3), 57.
20 Kassab Z, Mansouri S, Tamraoui Y, et al.Industrial Crops and Products, 2020, 144, 112035.
21 Valdeir A, Isabella K R D, Gabriela L B, et al.Cellulose, 2020, 27, 10571.
22 Chen S Y, Shen W, Yu F, et al.John Wiley & Sons, 2010, 117(1), 8.
23 Salla H V, Helina H.Science of the Total Environment, 2017, 599, 1608.
24 Jain P, Varshney S, Srivastava S.International Journal of Environmental Science and Technology, 2016, 13(12), 2893.
25 Chen S Y, Zou Y, Yan Z Y, et al.Journal of Hazardous Materials, 2009, 161(2-3), 1355.
26 Francisco H A R, Carlos E C M E, Aline L M, et al.Cellulose, 2019, 26(17), 9119.
27 Hong H J, Lim J S, Hwang J Y, et al.Carbohydrate Polymers, 2018, 195, 136.
28 Yao C, Wang F, Cai Z, et al. RSC Advances, 2016, 6(95), 92648.
29 Zhao J, Zhang X, He X, et al.Journal of Materials Chemistry A, 2015, 3(28), 14703.
30 Anirudhan T S, Shainy F, Deepa J R. Chemistry and Ecology, 2019, 35(3), 235.
31 Mautner A, Maples H A, Kobkeatthawin T, et al. International Journal of Environmental Science and Technology, 2016, 13(8), 1861.
32 Jiang J H, Zhang H F, Wang X W.Paper Science and Technology, 2017, 36(1), 7(in Chinese).
江嘉灏, 张洪锋, 王习文.造纸科学与技术, 2017, 36(1), 7.
33 Yi T, Zhao H Y, Mo Q, et al.Materials, 2020, 13(22), 5062.
34 Sehaqui H, Larraya U P, Liu P, et al.Cellulose, 2014, 21(4), 2831.
35 Liu P, Borrell P F, Bozic M, et al.Journal of Hazardous Materials, 2015, 294, 177.
36 Sanjay M R, Madhu P, Jawaid M, et al.Journal of Cleaner Production, 2018, 172, 566.
37 Zhang B B, Zhang W J, Du X Y, et al.Journal of Materials Engineering, 2020, 48(7), 93(in Chinese).
张波波, 张文娟, 杜雪岩, 等.材料工程, 2020, 48(7), 93.
38 Shalini R, Charles U P J, Pittman J, et al. Journal of Colloid and Interface Science, 2016, 468, 334.
39 Lu J, Jin R N, Liu C, et al.International Journal of Biological Macromolecules, 2016, 93, 547.
40 Saeid Z, Mamood N, Hossein R.Journal of Hazardous Materials, 2018, 344, 258.
41 Zhu H X, Jia S R, Wan T, et al.Carbohydrate Polymers, 2011, 86(4), 1558.
42 Alipour A, Zarinabadi S, Azimi A, et al.International Journal of Biological Macromolecules, 2020, 151, 124.
43 Ma H, Burger C, Hsiao B S, et al.ACS Macro Letters, 2012, 1(6), 723.
44 Abral H, Atmajaya A, Mahardika M, et al. Journal of Materials Research and Technology, 2020, 9(2), 2477.
45 Moon R J, Martini A, Nairn J, et al.Chemical Society Reviews, 2011, 40(7), 3941.
46 Zhou Y M, Fu S Y, Zhang L L, et al. Carbohydrate Polymers, 2014, 101(30), 75.
47 Zhao J, Zhang X, He X, et al.Journal of Materials Chemistry A, 2015, 3(28), 14703.
48 Zhu X H.Preparation of sulfur-containing modified chitosan/nanocellulose aerogel and its adsorption properties. Master's Thesis, South China University of Technology, China, 2017(in Chinese).
朱雪换.含硫改性壳聚糖/纳米纤维素气凝胶的制备及其吸附性能研究.硕士学位论文, 华南理工大学, 2017.
49 Wei J, Yang Z X, Sun Y, et al.Journal of Materials Science, 2019, 54(8), 6709.
50 Anirudhan T S, Deepa J R, Binusreejayan S.Chemical Engineering Journal, 2015, 273, 390.
51 Nath B K, Chaliha C, Kalita E, et al.Carbohydrate Polymers, 2016, 148, 397.
52 Dwivedi A, Sanandiya N D, Singh J, et al.ACS Sustainable Chemistry & Engineering, 2017, 5(1), 518.
53 Gholami D H, Jiang Q, Ghim D, et al.ACS Applied Nano Materials, 2019, 2(2), 1092.
54 Suman, Kardam A, Gera M, et al.Environmental Technology, 2015, 36, 5.
55 Aysu O, Aaron N, Gil G, et al.Journal of Cleaner Production, 2019, 215, 226.
56 Liu P, Garrido B, Oksman K, et al.RSC Advances, 2016, 6(109), 107759.
57 Cruz T P, Ortiz Q E O, Vega F K, et al.Environmental Science & Technology, 2017, 51(8), 4585.
58 Karim Z, Claudpierre S, Grahn M, et al.Journal of Membrane Science, 2016, 514, 418.
59 Karim Z, Mathew A P, Kokol V, et al.RSC Advances, 2016, 6(25), 20644.
60 Yang R, Katherine B A, Ma H Y, et al.Polymer, 2014, 55(5), 1167.
61 Haldar D, Purkait M K.Carbohydrate Polymers, 2020, 250, 116937.
62 Shang W J, Wang L.Biomass Chemical Engineering, 2020, 54(4), 49(in Chinese).
尚玮姣, 王璐.生物质化学工程, 2020, 54(4), 49.
63 Du H S, Liu W, Zhang M M, et al.Carbohydrate Polymers, 2019, 209, 130.
64 Othman H, Bahia A L, Abdalhadi D, et al.Environmental Science and Pollution Research, 2019, 26(27), 28080.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[3] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[4] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[5] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[6] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[7] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[8] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[9] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[10] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[11] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[12] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[13] 徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
[14] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[15] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed