Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110300-9    https://doi.org/10.11896/cldb.22110300
  多尺度稀土晶体材料及其应用 |
稀土改性锂基氧化物固态电解质研究现状与展望
张家庆1,2,3,†, 张达1,2,3,†, 陈昆峰4,*, 薛冬峰5,*, 梁风1,2,3,*
1 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
2 昆明理工大学真空冶金国家工程研究中心,昆明 650093
3 昆明理工大学冶金与能源工程学院,昆明 650093
4 山东大学晶体材料国家重点实验室,济南 250100
5 中国科学院深圳先进技术研究院多尺度晶体材料研究中心,广东 深圳 518055
Recent Advances and Perspective on Rare Earth Element Modified Lithium-based Oxide Solid Electrolytes
ZHANG Jiaqing1,2,3,†, ZHANG Da1,2,3,†, CHEN Kunfeng4,*, XUE Dongfeng5,*, LIANG Feng1,2,3,*
1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
2 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
5 Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 6760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全固态锂电池具有能量密度高和安全性好等优点,成为新能源领域的研究热点。固态电解质作为全固态锂电池的核心部分,决定了电池的能量密度、循环稳定性以及安全性等。其中,氧化物固态电解质因离子电导率高、电化学窗口宽、力学性能优异而备受青睐,所涉及的研究体系主要包括石榴石型、NASICON型以及钙钛矿型固态电解质。然而,烧结温度高、室温离子电导率低、结构不稳定使其难以满足实际应用。本文概述了石榴石型、NASICON型以及钙钛矿型氧化物固态电解质近年的研究现状和存在的问题;总结了具有大离子半径、高价态、低电负性、可变配位数和4f5d电子结构的稀土离子在改性氧化物固态电解质时起到的增加致密度、提高离子电导率以及稳定高离子导电晶相的作用;分析了当前稀土改性氧化物固态电解质面临的主要科学问题和技术瓶颈;最后,对未来稀土改性氧化物固态电解质发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张家庆
张达
陈昆峰
薛冬峰
梁风
关键词:  稀土  氧化物固态电解质  改性  离子电导率    
Abstract: All-solid-state lithium batteries have been a hot topic of research in the field of new energy because of their high energy density and high safety.The solid electrolyte, which is the key component of all-solid-state lithium battery, has significant influence on the energy density, cycle stability and safety of the battery. Among solid electrolytes, oxide solid electrolytes possess many merits of the high ionic conductivity, wide electrochemical window, and excellent mechanical property, including garnet-type, NASICON-type and perovskite-type solid electrolytes. However, the high sintering temperature, low ionic conductivity at room temperature, and unstable structure of oxide solid electrolytes cannot meet demands of the practical application. In this review, the research status and existing problems of garnet-type, NASICON-type and perovskite-type solid electrolytes in recent years are summarized. The functions of rare earth elements with large ionic radius, high valence, low electronegativity, variable coordination number and special electronic structure of 4f5d modified oxide solid electrolytes are concluded, including increasing the relative density, improving the ionic conductivity, and stabilizing the high ionic conductive crystal phase. The main scientific problems and technical bottlenecks of rare earth modified oxide solid electrolytes are analyzed. Finally, the future development direction of rare earth modified oxide solid electrolyte is prospected.
Key words:  rare earth    oxide solid electrolyte    modification    ionic conductivity
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O799  
基金资助: 国家自然科学基金(12175089;12205127;51832007;52220105010;M-0755);云南省重点研发计划项目(202103AF140006);云南省科技厅应用基础研究计划项目(202001AW070004)
通讯作者:  *Kunfeng.Chen@sdu.edu.cn;df.xue@siat.ac.cn;liangfeng@kust.edu.cn,陈昆峰,山东大学新一代半导体材料研究院教授、博士研究生导师,2014年博士毕业于大连理工大学。目前主要从事多尺度晶体材料生长制备与性能器件研究工作。发表论文100余篇,包括Journal of Rare Earths、Chemistry Frontiers、Dalton Transactions、Advanced Energy Materials等。
薛冬峰,中国科学院深圳先进技术研究院研究员,深圳理工大学科研讲席教授、博士研究生导师,1998年博士毕业于中国科学院长春应化所。目前主要从事功能无机材料结晶物理化学、多尺度晶态材料设计制备与应用、功能无机材料量子设计与合成及其器件应用以及稀土新材料研究工作。发表论文600余篇,包括Journal of the American Chemical Society、Advanced Materials、Physical Review Letters、Inorganic Chemistry等。
梁风,昆明理工大学冶金与能源工程学院教授、博士研究生导师,2014年博士毕业于东京工业大学。目前主要从事高能量密度电池及材料、碳基新材料、等离子体制备与改性能源材料等方面的研究。发表论文100余篇,包括Nature Communications、Materials Today、Advanced Functional Materials、Nano Energy等。   
作者简介:  共同第一作者。张家庆,现为昆明理工大学冶金与能源工程学院硕士研究生。目前主要研究固态电解质和钠离子电池正极材料。张达,昆明理工大学冶金与能源工程学院讲师,2021年博士毕业于昆明理工大学。目前主要从事等离子体制备与改性纳米材料和新能源材料与器件的研究工作。发表论文10余篇,包括Carbon,Journal of Power Sources、Nano Energy、Advanced Functional Materials等。
引用本文:    
张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
ZHANG Jiaqing, ZHANG Da, CHEN Kunfeng, XUE Dongfeng, LIANG Feng. Recent Advances and Perspective on Rare Earth Element Modified Lithium-based Oxide Solid Electrolytes. Materials Reports, 2023, 37(3): 22110300-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110300  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110300
1 Sun C W, Liu J, Gong Y D, et al.Nano Energy, 2017, 33, 363.
2 Liang F, Sun Y L, Yuan Y F, et al.Materials Today, 2021, 50, 418.
3 Yao Z Y, Kang Y, Hou M J, et al.Advanced Functional Materials, 2022, 32(16), 2111919.
4 Manthiram A, Yu X W, Wang S F, et al.Nature Reviews Materials, 2017, 2, 16103.
5 Thangadurai V, Weppner W.Ionics, 2006, 12, 81.
6 Li K, Xue D F.Journal of Physical Chemistry A, 2006, 110, 11332.
7 Sun C T, Xue D F.Scientia Sinica Chimica, 2018, 48(8), 804 (in Chinese).
孙丛婷, 薛冬峰. 中国科学: 化学, 2018, 48(8), 804.
8 Xu L L, Sun C T, Xue D F.Journal of Rare Earths, 2018, 36(1), 1 (in Chinese).
徐兰兰, 孙丛婷, 薛冬峰. 中国稀土学报, 2018, 36(1), 1.
9 Tan S Y.Annual report of China academy of engineering physics, Atomic Energy Press, 2018, pp. 82 (in Chinese).
谭世勇.中国工程物理研究院科技年报, 原子能出版社, 2018, pp. 82.
10 Gao C, Genoni A, Gao S, et al.Nature Chemistry, 2020, 12, 213.
11 Chen K F, Ma T Y, Wang A L, et al.Inorganic Chemicals Industry, 2021, 53(12), 1 (in Chinese).
陈昆峰, 马天宇, 王安良.无机盐工业, 2021, 53(12), 1.
12 Asano T, Sakai A, Ouchi S, et al.Advance Materials, 2018, 30, 1803075.
13 Sun Y F, Kotiuga M, Lim D, et al.Proceedings of National Academy of Sciences of the United States of America, 2018, 115, 9672.
14 Thangadurai V, Kaack H, Weppner W J F.Journal of the American Ceramic Society, 2003, 86, 437.
15 Huang J, Liang F, Hou M J, et al. Applied Materials Today, 2020, 20, 100750.
16 Wang C W, Fu K, Kammampata P S, et al.Chemical Reviews, 2020, 120, 4257.
17 Murugan R, Thangadurai V, Weppner W.Angewandte Chemie Internatio-nal Edition, 2007, 46, 7778.
18 Awaka J, Kijima N, Hayakawa H, et al.Journal of Solid State Chemistry, 2009, 182, 2046.
19 Awaka J, Takashima A, Kataoka K, et al.Chemistry Letters, 2011, 40, 60.
20 Wagner R, Redhammer G J, Rettenwander D, et al.Chemistry of Mate-rials, 2016, 28, 1861.
21 Zeier W G.Dalton Transactions, 2014, 43, 16133.
22 Xu M, Park M S, Lee J M, et al.Physical Review B, 2012, 85, 052301.
23 Goodenough J B, Hong H Y P, Kafalas J A.Materials Research Bulletin, 1976, 11, 203.
24 Stramare S, Thangadurai V, Weppner W.Chemistry of Materials, 2003, 15, 3974.
25 Subramanian M A, Subramanian R, Clearfield A.Solid State Ionics, 1986, 18, 562.
26 Kee Y, Dimov N, Kobayashi E, et al.Solid State Ionics, 2015, 272, 138.
27 Aono H, Sugimoto E, Sadaoka Y, et al.Journal of the Electrochemical Society, 1993, 140, 1827.
28 Inoishi A, Nishio A, Yoshioka Y, et al.Chemical Communications, 2018, 54, 3178.
29 Arbi K, Rojo J M, Sanz J.Journal of the European Ceramic Society, 2007, 27, 4215.
30 Aono H, Sugimoto E, Sadaaka Y, et al.Journal of the Electrochemical Society, 1989, 136,590.
31 Hartmann P, Leichtweiss T, Busche M R, et al.Journal of Physical Chemistry C, 2013, 117, 21064.
32 Kobayashi E, Plashnitsa L S, Doi T, et al.Electrochemistry Communications, 2010, 12, 894.
33 Arbi K, Bucheli W, Jiménez R, et al.Journal of the European Ceramic Society, 2015, 35, 1477.
34 Latie L, Villeneuve G, Conte D, et al.Journal of Solid State Chemistry, 1984, 51, 293.
35 Belous A G, Novitskaya G N, Polyanetskaya S V, et al.Inorganic Mate-rials, 1987, 23,470.
36 Ren Y Y, Chen K, Chen R J, et al.Journal of the American Ceramic Society, 2015, 98, 3603.
37 Itoh M, Inaguma Y, Jung W H, et al.Solid State Ionics, 1994, 70-71, 203.
38 Kobayashi S, Yokoe D, Fujiwara Y, et al.Nano Letters, 2022, 22,5516.
39 Mei A, Wang X L, Feng Y C, et al.Solid State Ionics, 2008, 179, 2255.
40 Birke P, Scharner S, Huggins R A, et al.Journal of the Electrochemical Society, 1997, 144(6), L167.
41 Chen C H, Amine K.Solid State Ionics, 2001, 144, 51.
42 Deviannapoorani C, Shankar L S, Ramakumar S, et al.Ionics, 2016, 22, 1281.
43 Wang X S, Liu J, Yin R, et al.Materials Letters, 2018, 231, 43.
44 Aono H, Sugimoto E, Sadaoka Y, et al.Solid State Ionics, 1990, 40-41, 38.
45 Kothari D H, Kanchan D K.Physica B: Condensed Matter, 2016, 494, 20.
46 Kothari D H, Kanchan D K.Physica B: Condensed Matter, 2016, 501, 90.
47 Teranishi T, Yamamoto M, Hayashi H, et al.Solid State Ionics, 2013, 243, 18.
48 Lee S J, Bae J J, Son J T.Journal of the Korean Physical Society, 2019, 74, 73.
49 Xue D F.Materials Focus, 2015, 4, 74.
50 Zhang Q, Hu S X, Qu H, et al.Angewandte Chemie International Edition, 2016, 55, 6896.
51 Hu S X, Jian J, Su J, et al.Chemical Science, 2017, 8, 4035.
52 Dorenbos P.Physical Review B, 2012, 85, 165107.
53 Gao Y, Liu X, Wang Z.Journal of Electronic Materials, 2017, 46, 3899.
54 Zhao L X, Hijikata Y, Irle S.International Journal of Quantum Chemistry, 2017, 117, 25371.
55 Lemierre V, Chrostowska A, Dargelos A, et al.Journal of Physical Che-mistry A, 2005, 109, 8348.
56 Da Silva E L, Marinopoulos A G, Vieira R B L, et al.Physical Review B, 2016, 94, 014104.
57 O’Callaghan M P, Powell A S, Titman J J, et al.Chemistry of Materials, 2008, 20, 2360.
58 Sun Y D, Guan P Y, Liu Y J, et al.Critical Reviews in Solid State and Materials Sciences, 2019, 44, 265.
59 Thangadurai V, Kaack H, Weppner W J F.Journal of the American Ceramic Society, 2003, 86, 437.
60 Suzuki Y, Kami K, Watanabe K, et al.Solid State Ionics, 2015, 278, 172.
61 Dhivya L, Janani N, Palanivel B, et al. AIP Advances, 2013, 3, 082115.
62 Shao C, Yu Z, Liu H, et al.Electrochimica Acta, 2017, 225, 345.
63 Deviannapoorani C, Dhivya L, Ramakumar S, et al.Journal of Power Sources, 2013, 240, 18.
64 Il’ina E A, Lyalin E D, Antonov B D, et al.Ionics, 2020, 26, 3239.
65 Liu X T, Li Y, Yang T T, et al.Journal of the American Ceramic Society, 2017, 100, 1527.
66 Zhang X, Oh T S, Fergus J W.Journal of the Electrochemical Society, 2019, 166, A3753.
67 Dumon A, Huang M, Shen Y, et al.Solid State Ionics, 2013, 243, 36.
68 Salimkhani H, Erdem E, Alkan Gursel S, et al.Journal of the American Ceramic Society, 2021, 104, 4257.
69 Song S D, Chen B T, Ruan Y L, et al.Electrochimica Acta, 2018, 270, 501.
70 Vizgalov V A, Nestler T, Trusov L A, et al.CrystEngComm, 2018, 20, 1375.
71 Orliukas A F, Šalkus T, Kežionis A, et al.Solid State Ionics, 2012, 225, 620.
72 Nikodimos Y, Tsai M C, Abrha L H, et al.Journal of Materials Chemistry A, 2020, 8, 11302.
73 Inaguma Y,Chen L Q, Itoh M, et al.Solid State Communications, 1993, 86, 689.
74 Sun Y D, Guan P Y, Liu Y J, et al.Critical Reviews in Solid State and Materials Sciences, 2019, 44, 265.
75 Shang S J, Deng Y, Mei O, et al.Chinese Journal of Power Sources, 2011, 35(2), 3 (in Chinese).
尚随军, 邓元, 梅骜, 等. 电源技术, 2011, 35(2), 3.
76 Zhang Y B, Meng Z F, Wang Y.Journal of the Electrochemical Society, 2020, 167, 080516.
77 Lee S H, Kim H K, Yun Y S, et al.Transactions on Electrical and Electronic Materials, 2014, 15, 96.
78 Zhang H, Liu X B, Qi Y, et al.Journal of Alloys and Compounds, 2013, 577, 57.
79 Babu K V, Veeraiah V.Materials Science-Poland, 2016, 34, 605.
80 Vidal K, Ortega-San-Martín L, Larrañaga A, et al.Ceramics International, 2014, 40, 8761.
81 Xie D J, Chen S J, Zhang Z H, et al.Journal of Power Sources, 2018, 389, 140.
82 Hood Z D, Wang H, Li Y C, et al.Solid State Ionics, 2015, 283, 75.
83 Minami K, Hayashi A, Ujiie S, et al.Solid State Ionics, 2011, 192, 122.
84 Jiang Z, Liang T B, Liu Y, et al.ACS Applied Materials & Interfaces, 2020, 12, 54662.
85 Ohtomo T, Hayashi A, Tatsumisago M, et al.Journal of Non-Crystalline Solids, 2013, 364, 57.
86 Chen T, Zhang L, Zhang Z X, et al.ACS Applied Materials & Interfaces, 2019, 11, 40808.
87 Zhang B K, Tan R, Yang L Y, et al.Energy Storage Materials, 2018, 10, 139.
88 Dong B, Yeandel S R, Goddard P, et al.Chemistry of Materials, 2020, 32, 215.
89 Rangasamy E, Wolfenstine J, Allen J, et al.Journal of Power Sources, 2013, 230, 261.
90 Rao R P, Maohua C, Adams S.Journal of Solid State Electrochemistry, 2012, 16, 3349.
91 Kazakevičius E, Šalkus T, Selskis A, et al.Solid State Ionics, 2011, 188, 73.
92 Li Q H, Xu C, Huang B, et al.Materials, 2020, 13, 1719.
[1] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[2] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[3] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[4] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[5] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[6] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[7] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[8] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[9] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[10] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[11] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[12] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[13] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[14] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[15] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed