Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110116-8    https://doi.org/10.11896/cldb.22110116
  多尺度稀土晶体材料及其应用 |
稀土氟化物上转换纳米晶尺寸调控的研究进展
武素丽*, 荀文斐, 张淑芬
大连理工大学智能材料化工前沿科学中心,精细化工国家重点实验室,辽宁 大连 116024
Progress in Size-controlled Synthesis of Rare Earth Fluoride Upconversion Nanocrystals
WU Suli*, XUN Wenfei, ZHANG Shufen
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 26768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土掺杂的上转换发光材料是一类能够吸收低频率光子、发射高频率光子的反斯托克斯位移发光材料。镧系稀土氟化物NaREF4是上转换效率最高的基质材料之一。该类材料由于具有荧光寿命长、背景干扰弱、组织穿透性强、化学稳定性高等优点,被广泛应用于显示与防伪、生物荧光标记、高性能传感器等领域。近年来,研究者发现通过尺寸控制可以有效改善NaREF4材料的性能。本文详细介绍了可控地合成不同尺寸NaREF4晶体的方法和影响因素,并概述了NaREF4晶体尺寸对其发光性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武素丽
荀文斐
张淑芬
关键词:  上转换  稀土  纳米晶体  尺寸调控    
Abstract: Rare earth ions doped upconversion nanocrystals is a kind of material which can absorb low frequency photons and emit high frequency photons. Rare earth fluoride (NaREF4) is considered to be a kind of most efficient matrix for rare earth doped upconversion material. Due to their long luminescence lifetime, low background interference, deep penetration and high stability, upconversion nanocrystals are widely used in the field of display and anticounterfeiting, biomarker, bioimaging and sensors. During recent years, researchers found that the performance of NaREF4 based upconversion nanocrystals can be effectively improved by controlling their size. In this paper, the influence of the size of NaREF4 crystals on its luminescent properties is summarized, and the size controllable synthesis methods of NaREF4 are introduced in detail.
Key words:  upconversion    rare earth    nanocrystal    size control
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O7  
基金资助: 国家自然科学基金(22178047;21878042);大连市科技创新基金(2020JJ26GX046)
通讯作者:  *wusuli@dlut.edu.cn,武素丽,大连理工大学化工学院教授、博士研究生导师,1996年、1999年、2007年先后获大连理工大学学士、硕士、博士学位,曾在新加坡国立大学做访问学者一年。主要从事稀土掺杂上转换纳米材料、量子点、光子晶体及其在传感器、太阳能电池和显示设备中应用的研究。在Advanced Materials、ACS Nano、Advanced Functional Materials等期刊发表文章100余篇,撰写英文专著Long Afterglow Phosphorescent Materials一部,获得国际授权专利3项、国内授权专利10项。   
引用本文:    
武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
WU Suli, XUN Wenfei, ZHANG Shufen. Progress in Size-controlled Synthesis of Rare Earth Fluoride Upconversion Nanocrystals. Materials Reports, 2023, 37(3): 22110116-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110116  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110116
1 Deshmukh P, Deo R K, Ahlawat A, et al. Journal of Alloys and Compounds, 2021, 859, 157857.
2 Huang H, Li H, Wang Z, et al. Chemical Engineering Journal, 2019, 361, 1089.
3 Homann C, Krukewitt L, Frenzel F, et al. Angewandte Chemie-International Edition, 2018, 57(28), 8765.
4 Ying W, Nie J, Fan X, et al. Advanced Optical Materials, 2021, 9(15), 2100197.
5 Wu Y, Zhao X, Zhang Z, et al. Ceramics International, 2021, 47(11), 15067.
6 Zhang C, Li X, Liu M, et al. Journal of Alloys and Compounds, 2020, 836, 155487.
7 Zhao Y, Zhan Q, Liu J, et al. Biomedical Optics Express, 2015, 6(3), 838.
8 Zhang Z, Jayakumar M K G, Shikha S, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12549.
9 Zhang Z, Jayakumar M K G, Zheng X, et al. Nature Communications, 2019, 10(1), 4586.
10 Tiemuer A, Yu H, Zhao C, et al. Chemical Engineering Journal (Lausanne, Switzerland, 1996), 2022, 430, 132858.
11 Zhao X, Fu Y, Ren C, et al. Analyst (London), 2021, 146(3), 989.
12 Suresh K, Bankapur A, Chidangil S, et al. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2021, 9(27), 866.
13 Hao S, Shang Y, Hou Y, et al. Solar Energy, 2021, 224, 563.
14 Lesley C F, Erna P T, Sung-Hwa H, et al. Optical Materials, 2022, 123, 111928.
15 Ouyang J, Yin D, Song K, et al. Journal of Nanoscience and Nanotechno-logy, 2015, 15(4), 2798.
16 Hu R, Ye S, Wang H, et al. Journal of Nanoscience and Nanotechnology, 2015, 15(1), 368.
17 Valenta J, Repko A, Greben M, et al. AIP Advances, 2018, 8(7), 75226.
18 Zhou Y, Ling B, Chen H, et al. Talanta, 2018, 180, 120.
19 Hao S, Shao W, Qiu H, et al. RSC Advances, 2014, 4(99), 56302.
20 He E, Zheng H, Gao W, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(6), 4139.
21 Zheng X G, Chen Y, Pan S S, et al. Journal of Fluorine Chemistry, 2022, 261, 110013.
22 Zheng W, Huang P, Tu D, et al. Chemical Society Reviews, 2015, 44(6), 1379.
23 Dong H, Sun L, Yan C. Nano Today, 2020, 35, 100956.
24 Vera V T, Mendez-Gonzalez D, Ramos-Ramos D J, et al. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2021, 9(28), 8902.
25 Kang Y, Zheng B, Li C, et al. Analytical Chemistry, 2020, 92(1), 1292.
26 Ou J, Hu Y, Huang L, et al. Journal of Materials Science, 2018, 53(11), 7963.
27 Mai H, Zhang Y, Si R, et al. Journal of the American Chemical Society, 2006, 128(19), 6426.
28 Wang W, Li Y, Kang Z, et al. Applied Catalysis B: Environmental, 2016, 182, 184.
29 Klier D T, Kumke M U. Journal of Materials Chemistry C, 2015, 3(42), 11228.
30 Lin M, Zhao Y, Liu M, et al. Journal of Materials Chemistry C, 2014, 2(19), 3671.
31 Zhang F, Wan Y, Yu T, et al. Angewandte Chemie International Edition, 2007, 46(42), 7976.
32 Du P, Deng A M, Luo L, et al. New Journal of Chemistry, 2017, 41(22), 13855.
33 Tymiński A, Martín I R, Grzyb T. Particle & Particle Systems Characte-rization, 2020, 37(8), 2000068.
34 Schroter A, Markl S, Weitzel N, et al. Advanced Functional Materials, 2022, 32(26), 2113065.
35 Pini F, Francés-Soriano L, Peruffo N, et al. ACS Applied Materials & Interfaces, 2022, 14(9), 11883.
36 Mai H, Zhang Y, Sun L, et al. Journal of Physical Chemistry C, 2007, 111(37), 13721.
37 Yin A, Zhang Y, Sun L, et al. Nanoscale, 2010, 2(6), 953.
38 Xu D, Xie F, Yao L, et al. Journal of Alloys and Compounds, 2020, 815, 152622.
39 Lin M, Xie L, Wang Z, et al. Journal of Materials Chemistry C, 2019, 7(10), 2971.
40 Yu J, Wang Y, He Y, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(10), 6257.
41 Mai H, Zhang Y, Sun L, et al. Journal of Physical Chemistry C, 2007, 111(37), 13730.
42 Rinkel T, Nordmann J, Raj A N, et al. Nanoscale, 2014, 6(23), 14523.
43 Liu X, Wang F, Han Y, et al. Nature (London), 2010, 463(7284), 1061.
44 Damasco J A, Chen G, Shao W, et al. ACS Applied Materials and Interfaces, 2014, 6(16), 13884.
45 Shi F, Zhao Y. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2014, 2(12), 2198.
46 Zeng S, Yi Z, Lu W, et al. Advanced Functional Materials, 2014, 24(26), 4051.
47 Tang J, Chen L, Li J, et al. Nanoscale, 2015, 7(35), 14752.
48 He L, Zou X, He X, et al. Crystal Growth and Design, 2018, 18(2), 808.
49 Sun C, Schaferling M, Resch-Genger U, et al. ChemNanoMat, 2021, 7(2), 174.
50 Luo X, Zhao W, Chen Q, et al. Journal of Alloys and Compounds, 2022, 897, 162672.
51 Zhou R, Ma T, Qiu B, et al. Materials Chemistry and Physics, 2017, 194, 23.
52 Yi G, Lu H, Zhao S, et al. Nano Letters, 2004, 4(11), 2191.
53 Zhao J, Jia T, Wang X, et al. Journal of Nanomaterials, DOI:org/10.1155/2014/821706.
54 Xie S, Tong C, Tan H, et al. Materials Chemistry Frontiers, 2018, 2(11), 1997.
55 Xu J, Du G, Tong C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112518.
56 Shi R, Ling X, Li X, et al. Nanoscale, 2017, 9(36), 13739.
57 Wang F, Deng R, Liu X. Nature Protocols, 2014, 9(7), 1634.
58 Ostrowski A D, Chan E M, Gargas D J, et al. ACS Nano, 2012, 6(3), 2686.
59 Pan X, Ren J, Zeng J, et al. Inorganic Chemistry Frontiers, 2022, 9(16), 4081.
60 Alkahtani M H, Alghannam F S, Sanchez C, et al. Nanotechnology, 2016, 27(48), 485501.
61 Brandmeier J C, Raiko K, Farka Z, et al. Advanced Healthcare Materials, 2021, 10(18), 2100506.
62 Liu G, Jiang F, Chen Y, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2020, 24, 102135.
63 Lay A, Sheppard O H, Siefe C, et al. ACS Central Science, 2019, 5(7), 1211.
64 Liu X, Yan L, Liu S, et al. Optik, 2020, 207, 164398.
65 Shan G, Assaaoudi H, Demopoulos G P. ACS Applied Materials & Interfaces, 2011, 3(9), 3239.
66 Zhao P, Zhu Y, Yang X, et al. Journal of Materials Chemistry: A, Materials for Energy and Sustainability, 2014, 2(39), 16523.
67 Luo X, Cha J G, Fu G, et al. International Journal of Energy Research, 2021, 45(11), 16339.
68 Liang L, Liu Y, Bu C, et al. Advanced Materials (Weinheim), 2013, 25(15), 2174.
69 Marciniak L, Prorok K, Bednarkiewicz A. Journal of Materials Chemistry C, 2017, 5(31), 7890.
70 Feng Z, Lin L, Wang Z, et al. Optics Communications, 2021, 491, 126942.
[1] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[2] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[3] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[4] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[5] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[6] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[7] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[8] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[9] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[10] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[11] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[12] 李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆. 稀土掺杂对稀土-镁基合金储氢性能的影响[J]. 材料导报, 2022, 36(20): 22010264-8.
[13] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[14] 于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
[15] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed