Abstract: Rare earth ions doped upconversion nanocrystals is a kind of material which can absorb low frequency photons and emit high frequency photons. Rare earth fluoride (NaREF4) is considered to be a kind of most efficient matrix for rare earth doped upconversion material. Due to their long luminescence lifetime, low background interference, deep penetration and high stability, upconversion nanocrystals are widely used in the field of display and anticounterfeiting, biomarker, bioimaging and sensors. During recent years, researchers found that the performance of NaREF4 based upconversion nanocrystals can be effectively improved by controlling their size. In this paper, the influence of the size of NaREF4 crystals on its luminescent properties is summarized, and the size controllable synthesis methods of NaREF4 are introduced in detail.
1 Deshmukh P, Deo R K, Ahlawat A, et al. Journal of Alloys and Compounds, 2021, 859, 157857. 2 Huang H, Li H, Wang Z, et al. Chemical Engineering Journal, 2019, 361, 1089. 3 Homann C, Krukewitt L, Frenzel F, et al. Angewandte Chemie-International Edition, 2018, 57(28), 8765. 4 Ying W, Nie J, Fan X, et al. Advanced Optical Materials, 2021, 9(15), 2100197. 5 Wu Y, Zhao X, Zhang Z, et al. Ceramics International, 2021, 47(11), 15067. 6 Zhang C, Li X, Liu M, et al. Journal of Alloys and Compounds, 2020, 836, 155487. 7 Zhao Y, Zhan Q, Liu J, et al. Biomedical Optics Express, 2015, 6(3), 838. 8 Zhang Z, Jayakumar M K G, Shikha S, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12549. 9 Zhang Z, Jayakumar M K G, Zheng X, et al. Nature Communications, 2019, 10(1), 4586. 10 Tiemuer A, Yu H, Zhao C, et al. Chemical Engineering Journal (Lausanne, Switzerland, 1996), 2022, 430, 132858. 11 Zhao X, Fu Y, Ren C, et al. Analyst (London), 2021, 146(3), 989. 12 Suresh K, Bankapur A, Chidangil S, et al. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2021, 9(27), 866. 13 Hao S, Shang Y, Hou Y, et al. Solar Energy, 2021, 224, 563. 14 Lesley C F, Erna P T, Sung-Hwa H, et al. Optical Materials, 2022, 123, 111928. 15 Ouyang J, Yin D, Song K, et al. Journal of Nanoscience and Nanotechno-logy, 2015, 15(4), 2798. 16 Hu R, Ye S, Wang H, et al. Journal of Nanoscience and Nanotechnology, 2015, 15(1), 368. 17 Valenta J, Repko A, Greben M, et al. AIP Advances, 2018, 8(7), 75226. 18 Zhou Y, Ling B, Chen H, et al. Talanta, 2018, 180, 120. 19 Hao S, Shao W, Qiu H, et al. RSC Advances, 2014, 4(99), 56302. 20 He E, Zheng H, Gao W, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(6), 4139. 21 Zheng X G, Chen Y, Pan S S, et al. Journal of Fluorine Chemistry, 2022, 261, 110013. 22 Zheng W, Huang P, Tu D, et al. Chemical Society Reviews, 2015, 44(6), 1379. 23 Dong H, Sun L, Yan C. Nano Today, 2020, 35, 100956. 24 Vera V T, Mendez-Gonzalez D, Ramos-Ramos D J, et al. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2021, 9(28), 8902. 25 Kang Y, Zheng B, Li C, et al. Analytical Chemistry, 2020, 92(1), 1292. 26 Ou J, Hu Y, Huang L, et al. Journal of Materials Science, 2018, 53(11), 7963. 27 Mai H, Zhang Y, Si R, et al. Journal of the American Chemical Society, 2006, 128(19), 6426. 28 Wang W, Li Y, Kang Z, et al. Applied Catalysis B: Environmental, 2016, 182, 184. 29 Klier D T, Kumke M U. Journal of Materials Chemistry C, 2015, 3(42), 11228. 30 Lin M, Zhao Y, Liu M, et al. Journal of Materials Chemistry C, 2014, 2(19), 3671. 31 Zhang F, Wan Y, Yu T, et al. Angewandte Chemie International Edition, 2007, 46(42), 7976. 32 Du P, Deng A M, Luo L, et al. New Journal of Chemistry, 2017, 41(22), 13855. 33 Tymiński A, Martín I R, Grzyb T. Particle & Particle Systems Characte-rization, 2020, 37(8), 2000068. 34 Schroter A, Markl S, Weitzel N, et al. Advanced Functional Materials, 2022, 32(26), 2113065. 35 Pini F, Francés-Soriano L, Peruffo N, et al. ACS Applied Materials & Interfaces, 2022, 14(9), 11883. 36 Mai H, Zhang Y, Sun L, et al. Journal of Physical Chemistry C, 2007, 111(37), 13721. 37 Yin A, Zhang Y, Sun L, et al. Nanoscale, 2010, 2(6), 953. 38 Xu D, Xie F, Yao L, et al. Journal of Alloys and Compounds, 2020, 815, 152622. 39 Lin M, Xie L, Wang Z, et al. Journal of Materials Chemistry C, 2019, 7(10), 2971. 40 Yu J, Wang Y, He Y, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(10), 6257. 41 Mai H, Zhang Y, Sun L, et al. Journal of Physical Chemistry C, 2007, 111(37), 13730. 42 Rinkel T, Nordmann J, Raj A N, et al. Nanoscale, 2014, 6(23), 14523. 43 Liu X, Wang F, Han Y, et al. Nature (London), 2010, 463(7284), 1061. 44 Damasco J A, Chen G, Shao W, et al. ACS Applied Materials and Interfaces, 2014, 6(16), 13884. 45 Shi F, Zhao Y. Journal of Materials Chemistry: C, Materials for Optical and Electronic Devices, 2014, 2(12), 2198. 46 Zeng S, Yi Z, Lu W, et al. Advanced Functional Materials, 2014, 24(26), 4051. 47 Tang J, Chen L, Li J, et al. Nanoscale, 2015, 7(35), 14752. 48 He L, Zou X, He X, et al. Crystal Growth and Design, 2018, 18(2), 808. 49 Sun C, Schaferling M, Resch-Genger U, et al. ChemNanoMat, 2021, 7(2), 174. 50 Luo X, Zhao W, Chen Q, et al. Journal of Alloys and Compounds, 2022, 897, 162672. 51 Zhou R, Ma T, Qiu B, et al. Materials Chemistry and Physics, 2017, 194, 23. 52 Yi G, Lu H, Zhao S, et al. Nano Letters, 2004, 4(11), 2191. 53 Zhao J, Jia T, Wang X, et al. Journal of Nanomaterials, DOI:org/10.1155/2014/821706. 54 Xie S, Tong C, Tan H, et al. Materials Chemistry Frontiers, 2018, 2(11), 1997. 55 Xu J, Du G, Tong C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112518. 56 Shi R, Ling X, Li X, et al. Nanoscale, 2017, 9(36), 13739. 57 Wang F, Deng R, Liu X. Nature Protocols, 2014, 9(7), 1634. 58 Ostrowski A D, Chan E M, Gargas D J, et al. ACS Nano, 2012, 6(3), 2686. 59 Pan X, Ren J, Zeng J, et al. Inorganic Chemistry Frontiers, 2022, 9(16), 4081. 60 Alkahtani M H, Alghannam F S, Sanchez C, et al. Nanotechnology, 2016, 27(48), 485501. 61 Brandmeier J C, Raiko K, Farka Z, et al. Advanced Healthcare Materials, 2021, 10(18), 2100506. 62 Liu G, Jiang F, Chen Y, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2020, 24, 102135. 63 Lay A, Sheppard O H, Siefe C, et al. ACS Central Science, 2019, 5(7), 1211. 64 Liu X, Yan L, Liu S, et al. Optik, 2020, 207, 164398. 65 Shan G, Assaaoudi H, Demopoulos G P. ACS Applied Materials & Interfaces, 2011, 3(9), 3239. 66 Zhao P, Zhu Y, Yang X, et al. Journal of Materials Chemistry: A, Materials for Energy and Sustainability, 2014, 2(39), 16523. 67 Luo X, Cha J G, Fu G, et al. International Journal of Energy Research, 2021, 45(11), 16339. 68 Liang L, Liu Y, Bu C, et al. Advanced Materials (Weinheim), 2013, 25(15), 2174. 69 Marciniak L, Prorok K, Bednarkiewicz A. Journal of Materials Chemistry C, 2017, 5(31), 7890. 70 Feng Z, Lin L, Wang Z, et al. Optics Communications, 2021, 491, 126942.