Electronegativity Evaluation of Charge Transfer Transition Theory of Rare Earth Ions and Its Application in Quantum Regulation Luminescence
SHI Guoqiang, XUE Dongfeng*
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
Abstract: The interaction between microscopic particles in the luminescence process can be attributed to quantum behavior. As the carrier of luminescence, rare earth crystalline materials contain many degrees of freedom including lattice, charge, spin and orbit. Rare earth ions can be regarded as an inorganic lattice active dopant in crystals. Due to the large radius of rare earth ions, their doping into the crystal is easy to cause lattice distortion, forms vacancy defects, and further leads to changes in the electronic structure and lattice environment of the crystal, forming defects, lattice, electronic structure and other multiscale structures. The defects caused by the doping of rare earth ions can be attributed to the local symmetry broken, which affects the lattice degree of freedom. In addition, the complexity of rare earth ion f electrons leads to the instability of charge, spin, orbit and other degrees of freedom in the system. Therefore, the essence of luminescence sources in rare earth crystalline materials can be determined by the multiple degrees of freedom coupling method. By evaluating the charge transfer transition theory of rare earth ions through electronegativity, we can integrate the lattice degree of freedom of ionic scale and the charge, spin and orbital degrees of freedom of electronic scale in rare earth crystalline materials, and realize the quantum control of luminescence of rare earth crystalline materials. This paper mainly discusses the electronegativity evaluation of charge transfer transition theory of rare earth ions and its application in quantum controlled luminescence.
通讯作者: *df.xue@siat.ac.cn,薛冬峰,国家杰青、博士研究生导师,享受国务院政府特殊津贴,现任中国科学院深圳先进技术研究院多尺度晶体材料研究中心主任、深圳理工大学材料学院科研讲席教授,致力于新型晶体材料与储能技术研究。1993年河南大学应用化学专业本科毕业,1998年中国科学院长春应用化学研究所无机化学专业博士毕业。2003年起历任大连理工大学化工学院材料化工系主任、中国科学院长春应用化学研究所稀土资源利用国家重点实验室主任和副所长、山东大学晶体材料国家重点实验主任和晶体所所长。西澳大利亚大学Gledden高级访问学者,教育部新世纪优秀人才支持计划入选者,中科院“百人计划”择优支持者,国家万人计划科技创新领军人才,国家新材料产业发展专家咨询委员会委员,中国建筑材料联合会专家委员会新材料学部委员,英国皇家化学会会士。在Journal of the American Chemical Society、Advanced Materials、Physical Review Letter等期刊上发表论文600余篇。学术成果获得中国颗粒学会自然科学一等奖、中国化工学会基础研究二等奖等奖项、国际纯粹与应用化学联合会&新材料及制备杰出奖等。
作者简介: 史国强,2013年7月、2017年7月和2021年7月分别于长春理工大学、中国科学院新疆理化技术研究所和哈尔滨工业大学获得工学学士学位、工程硕士学位以及工学博士学位,现为中国科学院深圳先进技术研究院多尺度晶体材料研究中心助理研究员,聚焦功能晶体材料的多尺度量子设计、功能的量子来源以及多尺度多自由度协同作用机制研究。在Journal of the American Chemical Society和Angewandte Chemie International Edition等期刊发表论文10余篇(其中,4篇IF>10,1篇论文入选ESI热点文章,2篇论文入选ESI高被引文章)。获授权中国发明专利3项、美国发明专利1项、英国发明专利1项、日本发明专利1项,并获得2017年度中国光学十大进展。主持国家自然科学基金青年科学基金项目、中国博士后科学基金、广东省基础与应用基础研究基金区域联合基金、中科院深圳先进院优青创新基金等4项科研任务。
引用本文:
史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
SHI Guoqiang, XUE Dongfeng. Electronegativity Evaluation of Charge Transfer Transition Theory of Rare Earth Ions and Its Application in Quantum Regulation Luminescence. Materials Reports, 2023, 37(3): 22110122-5.
1 Obodovskiy I. Radiation: fundamentals, applications, risks and safety, Elsevier B.V. Press, Netherlands, 2019, pp. 207. 2 Bekker T B, Ryadun A A, Davydov A V, et al. Journal of Alloys and Compounds, 2022, 900, 163343. 3 Hu J L, Wang H L, Liang X T, et al. Science China Technological Sciences, 2020, 50(6), 650(in Chinese). 胡家乐, 王汇霖, 梁晰童, 等. 中国科学: 技术科学, 2020, 50(6), 650. 4 Chen K F, Xue D F. Scientia Sinica Chimica, 2021, 51(6), 742(in Chinese). 陈昆峰, 薛冬峰. 中国科学: 化学, 2021, 51(6), 742. 5 Chen K F, Ma T Y, Wang A L, et al. Inorganic Chemicals Industry, 2021, 53(12), 1(in Chinese). 陈昆峰, 马天宇, 王安良, 等. 无机盐工业, 2021, 53(12), 1. 6 Wang Y, Li W, Xue D F. Chinese Journal of Quantum Electronics, 2021, 38(2), 228(in Chinese). 王燕, 李雯, 薛冬峰. 量子电子学报, 2021, 38(2), 228. 7 Chen K F, Hu J L, Zhang Y B, et al. Inorganic Chemicals Industry, 2020, 52(3), 11(in Chinese). 陈昆峰, 胡家乐, 张一波, 等. 无机盐工业, 2020, 52(3), 11. 8 Wang Y, Sun C T, Zhang W, et al. Journal of Technology, 2019, 19(1), 1(in Chinese). 王燕, 孙丛婷, 张伟, 等. 应用技术学报, 2019, 19(1), 1. 9 Xu L L, Sun C T, Xue D F. Journal of the Chinese Society of Rare Earths, 2018, 36(1), 1(in Chinese). 徐兰兰, 孙丛婷, 薛冬峰. 中国稀土学报, 2018, 36(1), 1. 10 Hu J L, Xue D F. Chinese Journal of Applied Chemistry, 2020, 37(3), 245(in Chinese). 胡家乐, 薛冬峰. 应用化学, 2020, 37(3), 245. 11 Xue D F, Hu J L, Liang X T, et al. Science China Technological Sciences, 2020, 63, 1085. 12 Zheng B, Fan J, Chen B, et al. Chemical Reviews, 2022, 122, 5519. 13 Duan X, Zhong B, Lei Y, et al. Applied Sciences, 2022, 12, 4447. 14 Chen Y, Zhang D, Peng Z, et al. Frontiers in Materials, 2021, 8, 679167. 15 Wu Y, Zhang Y, Du F, et al. Physical Review Letters, 2021, 126, 216406. 16 Wang A, Du F, Zhang Y, et al. Science Bulletin, 2021, 66, 1389. 17 Shen B, Zhang Y, Komijani Y, et al. Nature, 2020, 579, 51. 18 Li K Y, Shao J J, Xue D F. Materials Research Innovations, 2013, 17, 218. 19 Li K Y, Xue D F. Physica Status Solidi (b), 2007, 244, 1982. 20 Boutinaud P. Inorganic Chemistry, 2013, 52, 6028. 21 Yang F, Ren G H. Chinese Journal of Quantum Electronics, 2021, 38(2), 243(in Chinese). 杨帆, 任国浩. 量子电子学报, 2021, 38(2), 243. 22 Shi G Q, Xue D F. Chmeical Research, 2022, 33(5), 387(in Chinese). 史国强, 薛冬峰. 化学研究, 2022, 33(5), 387. 23 Shi G Q, Xue D F. Progress in Natural Science: Materials International, DOI: 10.1016/j.pnsc.2022.09.017. 24 Shi G Q, Xue D. Science China Technological Sciences, 2022, 65, 2787. 25 Li Q, Lin K, Liu Z, et al. Chemical Reviews, 2022, 122, 8438. 26 Zheng J, Archer L A. Chemical Reviews, 2022, 122, 14440. 27 Li Z, Xiao C, Zhu H, et al. Journal of the American Chemical Society, 2016, 138, 14810. 28 Tonkaev P, Sinev I S, Rybin M V, et al. Chemical Reviews, 2022, 122, 15414. 29 Zhu J, Zhang Y. Scientia Sinica Technologica, 2020, 50(6), 693(in Chinese). 朱静, 张扬. 中国科学: 技术科学, 2020, 50(6), 693. 30 Xiao D, Gu L. Nano Select, 2020, 1, 183. 31 Zhang S, Chiu I T, Lee M H, et al. Chemistry of Materials, 2022, 34, 2076. 32 Manjo T, Kitou S, Katayama N, et al. Materials Advances, 2022, 3, 3192. 33 You Z, Ramanathan S. Proceedings of the IEEE, 2015, 103, 1289. 34 Khomskii D I, Streltsov S V. Chemical Reviews, 2021, 121, 2992. 35 Li B, Wang Z, Su S J, et al. Advanced Optical Materials, 2019, 7, 1801496 36 Liu X Z, Tang Z X, Li Q H, et al. Cell Reports Physical Science, 2020, 1, 100066. 37 Bauer B, Bravyi S, Motta M, et al. Chemical Reviews, 2020, 120, 12685. 38 Dong Y, Zheng Y H, Liu W P, et al. Chinese Journal of Quantum Electronics, 2022, 40(1), 32 (in Chinese). 童叶, 郑宇航, 刘文鹏, 等. 量子电子学报, 2022, 40(1), 32.