Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110122-5    https://doi.org/10.11896/cldb.22110122
  多尺度稀土晶体材料及其应用 |
电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用
史国强, 薛冬峰*
中国科学院深圳先进技术研究院,多尺度晶体材料研究中心,广东 深圳 518055
Electronegativity Evaluation of Charge Transfer Transition Theory of Rare Earth Ions and Its Application in Quantum Regulation Luminescence
SHI Guoqiang, XUE Dongfeng*
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 3437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 发光过程中存在微观粒子之间的相互作用,可将其归结为量子行为。而稀土晶态材料作为发光的载体,包含了晶格、电荷、自旋以及轨道在内的多种自由度。稀土离子在晶体中可以看作一种无机晶格活性掺杂剂。由于稀土离子半径较大,其掺杂到晶体中容易引起晶格畸变,形成空位缺陷,并进一步导致晶体的电子结构和晶格环境发生改变,形成缺陷、晶格、电子结构等多尺度结构。由稀土离子掺杂引起的缺陷可以归结为局域对称性破缺,影响晶格自由度。此外,稀土离子f电子的复杂性导致了体系中的电荷、自旋、轨道等自由度的不稳定性。因此,通过多自由度耦合方法可以明确稀土晶态材料中发光来源的本质。通过电负性评估稀土离子电荷转移跃迁理论,可以将稀土晶态材料中离子尺度的晶格自由度,以及电子尺度的电荷、自旋以及轨道自由度整合起来,实现稀土晶态材料发光的量子调控。本文主要论述电负性评估稀土离子电荷转移跃迁理论及其在量子调控发光中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史国强
薛冬峰
关键词:  量子调控  稀土离子  离子电负性标度  自由度  电荷转移跃迁理论    
Abstract: The interaction between microscopic particles in the luminescence process can be attributed to quantum behavior. As the carrier of luminescence, rare earth crystalline materials contain many degrees of freedom including lattice, charge, spin and orbit. Rare earth ions can be regarded as an inorganic lattice active dopant in crystals. Due to the large radius of rare earth ions, their doping into the crystal is easy to cause lattice distortion, forms vacancy defects, and further leads to changes in the electronic structure and lattice environment of the crystal, forming defects, lattice, electronic structure and other multiscale structures. The defects caused by the doping of rare earth ions can be attributed to the local symmetry broken, which affects the lattice degree of freedom. In addition, the complexity of rare earth ion f electrons leads to the instability of charge, spin, orbit and other degrees of freedom in the system. Therefore, the essence of luminescence sources in rare earth crystalline materials can be determined by the multiple degrees of freedom coupling method. By evaluating the charge transfer transition theory of rare earth ions through electronegativity, we can integrate the lattice degree of freedom of ionic scale and the charge, spin and orbital degrees of freedom of electronic scale in rare earth crystalline materials, and realize the quantum control of luminescence of rare earth crystalline materials. This paper mainly discusses the electronegativity evaluation of charge transfer transition theory of rare earth ions and its application in quantum controlled luminescence.
Key words:  quantum regulation    rare earth ion    ionic electronegativity scale    degrees of freedom    charge transfer transition theory
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O616  
基金资助: 国家自然科学基金重点项目(51832007);国家自然科学基金国际(地区)合作与交流项目(52220105010);国家自然科学基金中德科学中心2021年度中德合作交流项目(M-0755);国家自然科学基金青年科学基金项目(52203366);山东省自然科学基金重大基础研究项目(ZR2020ZD35);山东省产业技术研究院研发项目(Z1250020005);中国博士后科学基金(2021M703363);广东省基础与应用基础研究基金区域联合基金青年基金项目(2021A1515110936)
通讯作者:  *df.xue@siat.ac.cn,薛冬峰,国家杰青、博士研究生导师,享受国务院政府特殊津贴,现任中国科学院深圳先进技术研究院多尺度晶体材料研究中心主任、深圳理工大学材料学院科研讲席教授,致力于新型晶体材料与储能技术研究。1993年河南大学应用化学专业本科毕业,1998年中国科学院长春应用化学研究所无机化学专业博士毕业。2003年起历任大连理工大学化工学院材料化工系主任、中国科学院长春应用化学研究所稀土资源利用国家重点实验室主任和副所长、山东大学晶体材料国家重点实验主任和晶体所所长。西澳大利亚大学Gledden高级访问学者,教育部新世纪优秀人才支持计划入选者,中科院“百人计划”择优支持者,国家万人计划科技创新领军人才,国家新材料产业发展专家咨询委员会委员,中国建筑材料联合会专家委员会新材料学部委员,英国皇家化学会会士。在Journal of the American Chemical Society、Advanced Materials、Physical Review Letter等期刊上发表论文600余篇。学术成果获得中国颗粒学会自然科学一等奖、中国化工学会基础研究二等奖等奖项、国际纯粹与应用化学联合会&新材料及制备杰出奖等。   
作者简介:  史国强,2013年7月、2017年7月和2021年7月分别于长春理工大学、中国科学院新疆理化技术研究所和哈尔滨工业大学获得工学学士学位、工程硕士学位以及工学博士学位,现为中国科学院深圳先进技术研究院多尺度晶体材料研究中心助理研究员,聚焦功能晶体材料的多尺度量子设计、功能的量子来源以及多尺度多自由度协同作用机制研究。在Journal of the American Chemical Society和Angewandte Chemie International Edition等期刊发表论文10余篇(其中,4篇IF>10,1篇论文入选ESI热点文章,2篇论文入选ESI高被引文章)。获授权中国发明专利3项、美国发明专利1项、英国发明专利1项、日本发明专利1项,并获得2017年度中国光学十大进展。主持国家自然科学基金青年科学基金项目、中国博士后科学基金、广东省基础与应用基础研究基金区域联合基金、中科院深圳先进院优青创新基金等4项科研任务。
引用本文:    
史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
SHI Guoqiang, XUE Dongfeng. Electronegativity Evaluation of Charge Transfer Transition Theory of Rare Earth Ions and Its Application in Quantum Regulation Luminescence. Materials Reports, 2023, 37(3): 22110122-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110122  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110122
1 Obodovskiy I. Radiation: fundamentals, applications, risks and safety, Elsevier B.V. Press, Netherlands, 2019, pp. 207.
2 Bekker T B, Ryadun A A, Davydov A V, et al. Journal of Alloys and Compounds, 2022, 900, 163343.
3 Hu J L, Wang H L, Liang X T, et al. Science China Technological Sciences, 2020, 50(6), 650(in Chinese).
胡家乐, 王汇霖, 梁晰童, 等. 中国科学: 技术科学, 2020, 50(6), 650.
4 Chen K F, Xue D F. Scientia Sinica Chimica, 2021, 51(6), 742(in Chinese).
陈昆峰, 薛冬峰. 中国科学: 化学, 2021, 51(6), 742.
5 Chen K F, Ma T Y, Wang A L, et al. Inorganic Chemicals Industry, 2021, 53(12), 1(in Chinese).
陈昆峰, 马天宇, 王安良, 等. 无机盐工业, 2021, 53(12), 1.
6 Wang Y, Li W, Xue D F. Chinese Journal of Quantum Electronics, 2021, 38(2), 228(in Chinese).
王燕, 李雯, 薛冬峰. 量子电子学报, 2021, 38(2), 228.
7 Chen K F, Hu J L, Zhang Y B, et al. Inorganic Chemicals Industry, 2020, 52(3), 11(in Chinese).
陈昆峰, 胡家乐, 张一波, 等. 无机盐工业, 2020, 52(3), 11.
8 Wang Y, Sun C T, Zhang W, et al. Journal of Technology, 2019, 19(1), 1(in Chinese).
王燕, 孙丛婷, 张伟, 等. 应用技术学报, 2019, 19(1), 1.
9 Xu L L, Sun C T, Xue D F. Journal of the Chinese Society of Rare Earths, 2018, 36(1), 1(in Chinese).
徐兰兰, 孙丛婷, 薛冬峰. 中国稀土学报, 2018, 36(1), 1.
10 Hu J L, Xue D F. Chinese Journal of Applied Chemistry, 2020, 37(3), 245(in Chinese).
胡家乐, 薛冬峰. 应用化学, 2020, 37(3), 245.
11 Xue D F, Hu J L, Liang X T, et al. Science China Technological Sciences, 2020, 63, 1085.
12 Zheng B, Fan J, Chen B, et al. Chemical Reviews, 2022, 122, 5519.
13 Duan X, Zhong B, Lei Y, et al. Applied Sciences, 2022, 12, 4447.
14 Chen Y, Zhang D, Peng Z, et al. Frontiers in Materials, 2021, 8, 679167.
15 Wu Y, Zhang Y, Du F, et al. Physical Review Letters, 2021, 126, 216406.
16 Wang A, Du F, Zhang Y, et al. Science Bulletin, 2021, 66, 1389.
17 Shen B, Zhang Y, Komijani Y, et al. Nature, 2020, 579, 51.
18 Li K Y, Shao J J, Xue D F. Materials Research Innovations, 2013, 17, 218.
19 Li K Y, Xue D F. Physica Status Solidi (b), 2007, 244, 1982.
20 Boutinaud P. Inorganic Chemistry, 2013, 52, 6028.
21 Yang F, Ren G H. Chinese Journal of Quantum Electronics, 2021, 38(2), 243(in Chinese).
杨帆, 任国浩. 量子电子学报, 2021, 38(2), 243.
22 Shi G Q, Xue D F. Chmeical Research, 2022, 33(5), 387(in Chinese).
史国强, 薛冬峰. 化学研究, 2022, 33(5), 387.
23 Shi G Q, Xue D F. Progress in Natural Science: Materials International, DOI: 10.1016/j.pnsc.2022.09.017.
24 Shi G Q, Xue D. Science China Technological Sciences, 2022, 65, 2787.
25 Li Q, Lin K, Liu Z, et al. Chemical Reviews, 2022, 122, 8438.
26 Zheng J, Archer L A. Chemical Reviews, 2022, 122, 14440.
27 Li Z, Xiao C, Zhu H, et al. Journal of the American Chemical Society, 2016, 138, 14810.
28 Tonkaev P, Sinev I S, Rybin M V, et al. Chemical Reviews, 2022, 122, 15414.
29 Zhu J, Zhang Y. Scientia Sinica Technologica, 2020, 50(6), 693(in Chinese).
朱静, 张扬. 中国科学: 技术科学, 2020, 50(6), 693.
30 Xiao D, Gu L. Nano Select, 2020, 1, 183.
31 Zhang S, Chiu I T, Lee M H, et al. Chemistry of Materials, 2022, 34, 2076.
32 Manjo T, Kitou S, Katayama N, et al. Materials Advances, 2022, 3, 3192.
33 You Z, Ramanathan S. Proceedings of the IEEE, 2015, 103, 1289.
34 Khomskii D I, Streltsov S V. Chemical Reviews, 2021, 121, 2992.
35 Li B, Wang Z, Su S J, et al. Advanced Optical Materials, 2019, 7, 1801496
36 Liu X Z, Tang Z X, Li Q H, et al. Cell Reports Physical Science, 2020, 1, 100066.
37 Bauer B, Bravyi S, Motta M, et al. Chemical Reviews, 2020, 120, 12685.
38 Dong Y, Zheng Y H, Liu W P, et al. Chinese Journal of Quantum Electronics, 2022, 40(1), 32 (in Chinese).
童叶, 郑宇航, 刘文鹏, 等. 量子电子学报, 2022, 40(1), 32.
[1] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed