Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20110168-11    https://doi.org/10.11896/cldb.20110168
  无机非金属及其复合材料 |
上转换纳米颗粒的发光机理、制备及生物应用进展
李静芝1,2, 高志贤1, 李双1, 赵旭东1, 秦英凯1, 刘辉2, 韩铁1
1 军事科学院军事医学研究院环境医学与作业医学研究所,天津 300050
2 兰州大学公共卫生学院,兰州 730000
Advances in Luminescence Mechanism, Preparation and Biological Application of Upconversion Nanoparticles
LI Jingzhi1,2, GAO Zhixian1, LI shuang1, ZHAO Xudong1, QIN Yingkai1, LIU Hui2, HAN Tie1
1 Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin 300050, China
2 School of Public Health, Lanzhou University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 11815KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土掺杂的上转换纳米颗粒(UCNPs)是一类吸收长波近红外光子并发射短波紫外可见光子的新型荧光标记材料,即其能够有效地将两个或多个低能光子转换成高能光子。UCNPs克服了传统荧光标记材料的灵敏度低、光稳定性差等缺点,成为有前途的传统标记材料的替代物之一。近红外激发的UCNPs具有反斯托克斯位移大、对生物组织损伤小、组织穿透能力强、转换效率高、无背景荧光干扰以及无光漂白效应等诸多优点。其由于突出的优点、独特的光学性能,在很多领域成为研究的新热点,尤其是在生物传感、成像、靶向给药和光动力学治疗以及生物检测分析应用中显示出巨大的潜力。本文简要介绍了UCNPs的组成、发光机理以及主要合成方法;在此基础上,重点综述了UCNPs在传感、成像和治疗应用方面的最新研究进展,最后合理地分析了UCNPs目前存在的不足,并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李静芝
高志贤
李双
赵旭东
秦英凯
刘辉
韩铁
关键词:  上转换纳米颗粒  生物传感  生物成像  光疗法  靶向给药    
Abstract: As a new class of fluorescent-labeled materials, rare-earth doped upconversion nanoparticles (UCNPs) can absorb long wavelength near-infrared photons and emit short wavelength UV visible photons. It is capable of efficiently converting two or more low energy photons into high-energy photons. UCNPs have overcome the shortcomings of the traditional fluorescent labeling materials such as low sensitivity and poor photostability, and have become one of the promising alternatives to the traditional labeling materials. UCNPs excited by NIR have many advantages, such as large anti-stokes shift, little damage to biological tissues, high tissue penetration ability, high conversion efficiency, no background fluorescence interference and no photo-bleaching effect. Therefore, it has become a new focus in many fields such as biosensing, imaging, targeted drug delivery, photodynamic therapy and analytical applications for bio-detection due to its outstanding characteristics. In this review, we briefly described the composition, luminescence mechanism and main synthetic methods of UCNPs, and focused on the recent progress in sen-sing, imaging and therapeutic applications. Finally, we reasonably analyzed the current insufficient of UCNPs and gave an outlook on its future development.
Key words:  upconversion nanoparticles    biosensing    bioimaging    light activated therapy    drug delivery
发布日期:  2022-07-26
ZTFLH:  TQ133. 3  
  TQ422  
基金资助: 国家食品安全重点研发计划专项(2018YFC1603500)
通讯作者:  liuhui@lzu.edu.cn; H13601370683@163.com   
作者简介:  李静芝,2018年毕业于中南大学,获得医学学士学位。现为兰州大学公共卫生学院在读硕士研究生,在刘辉副教授和韩铁研究员的指导下进行研究,目前主要研究领域为运用上转换纳米材料检测食品中的真菌毒素。
刘辉,兰州大学副教授、硕士研究生导师。1990年7月本科毕业于吉林大学,2011年7月在兰州大学取得医学硕士学位,毕业后在兰州大学工作。主要从事营养与相关疾病研究、食品污染物检测以及食品安全风险评估的研究,发表研究论文10余篇,发明专利1项。
韩铁,环境医学与作业医学研究员,硕士研究生导师,长期从事公共预防医学研究与管理工作,参与完成并获批省部级以上科研成果多项,发表研究论文与研究报告数十篇。
引用本文:    
李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
LI Jingzhi, GAO Zhixian, LI shuang, ZHAO Xudong, QIN Yingkai, LIU Hui, HAN Tie. Advances in Luminescence Mechanism, Preparation and Biological Application of Upconversion Nanoparticles. Materials Reports, 2022, 36(14): 20110168-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110168  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20110168
1 Pena-Pereira F, García-Figueroa A, Lavilla I, et al. TrAC Trends in Analytical Chemistry, 2020, 125,115837.
2 Lin M,Zhao Y,Dong Y Q,et al. Materials China,2012,31(1),36(in Chinese).
林敏,赵英,董宇卿,等. 中国材料进展,2012,31(1),36.
3 Gnach A, Bednarkiewicz A. Nano Today, 2012, 7(6),532.
4 Xu J, Gulzar A, Yang P P, et al. Coordination Chemistry Reviews, 2019, 381,104.
5 Ouyang X Y,Li L,Zhang L W,et al. Food and Fermentation Industries,2020,46(16),226(in Chinese).
欧阳秀酝,李琳,张林威,等. 食品与发酵工业,2020,46(16),226.
6 Du P, Zhang P, Kang S H, et al. Sensors and Actuators B, 2017, 252,584.
7 Yang B, Chen H, Zheng Z, et al. Journal of Luminescence, 2020, 223,117226.
8 Jafari M, Rezvanpour A. Advanced Powder Technology,2019,30(9),1731.
9 Li A H, Chen G Y. Journal of Physics D: Applied Physics, 2020, 53(4),043001.
10 Li X L,Tan G L,Zhang N,et al. Modern Food Science and Technology, 2014,30(8),280(in Chinese).
李向丽,谭贵良,张娜,等. 现代食品科技,2014,30(8),280.
11 Guo S, Tsang M K, Lo W S, et al. Nanoscale, 2018, 10(6), 2790.
12 He H L, Zhang Y, Li Y, et al. ACS Omega, 2018, 3(12),17814.
13 Tu L P, Liu X M, Wu F, et al. Chemical Society Reviews, 2015, 44(6),1331.
14 Auzel F. Chemical Reviews, 2004, 104(1),139.
15 Qin X Y,Lin Q S,Yuan Q. Progress in Pharmaceutical Sciences,2019,43(5),324(in Chinese).
覃馨园,林乔松,袁荃.药学进展,2019,43(5),324.
16 Chen G Y, Qiu H L, Prasad P N, et al. Chemical Reviews, 2014, 114(10),5161.
17 Qiu P Y, Zhou N, Chen H Y, et al. Nanoscale, 2013, 5(23), 11512.
18 Wu S J.Research of the sensitive detection methods for microbial toxins based on upconversion nanoparticals as labels.Ph.D. Thesis,Jiangnan University,China,2013(in Chinese).
吴世嘉.基于上转换荧光纳米探针的高灵敏微生物毒素检测方法研究.博士学位论文,江南大学,2013.
19 Chatterjee D K, Rufaihah A J, Zhang Y. Biomaterials,2008,29(7),937.
20 Feng A L,Xu R,Wang Y N,et al. Materials Reports A:Review Papers,2019,33(7),2252(in Chinese).
冯爱玲,徐榕,王彦妮,等. 材料导报:综述篇,2019,33(7),2252.
21 Nigoghossian K, Ouellet S, Plain J, et al. Journal of Materials Chemistry B, 2017, 5(34), 7109.
22 Xu J T, Yang D, Han W, et al. Journal of Materials Chemistry C, 2018, 6(28),7533.
23 Kamińska I, Elbaum D, Sikora B, et al. Nanotechnology, 2018, 29(2), 025702.
24 Stochaj U, Rodríguez D C, Cooper D R, et al. Nanoscale, 2018, 10(30), 14464.
25 Qiu X M,Zhu L X,Yang N,et al. Animal Husbandry and Feed Science,2020,41(6),78(in Chinese).
裘雪梅,朱立鑫,杨妮,等. 畜牧与饲料科学,2020,41(6),78.
26 Ouyang Q L,Wan Y Q. Journal of Analytical Science,2020,36(6),789(in Chinese).
欧阳秋丽,万益群.分析科学学报,2020,36(6),789.
27 Hassan Q, Li S P, Ferrag C, et al. Analytica Chimica Acta, 2019, 1089,32.
28 Govindaraju S, Reddy A S, Kim J S, et al. Applied Surface Science, 2019, 498,143837.
29 Chen G W, Song F L, Xiong X Q, et al. Industrial & Engineering Che-mistry Research, 2013, 52(33),11228.
30 Long Q, Li H T, Zhang Y Y, et al. Biosensors and Bioelectronics, 2015, 68,168.
31 Li F, Zhang H Q, Wang Z X, et al. Analytical Chemistry, 2015, 87(1),274.
32 Wu Z Z, He D Y, Cui B. Microchimica Acta, 2018, 185(11),8.
33 Wu Z Z, Xu E B, Chughtai M F J, et al. Food Chemistry, 2017, 230,673.
34 Wang Y, Bai J L, Huo B Y, et al. Analytical Chemistry, 2018, 90(16), 9936.
35 Cheng K Y, Zhang J G, Zhang L P, et al. Spectrochimica Acta Pt A:Molecular and Biomolecular Spectroscopy, 2017, 171,168.
36 Liu Y, Ouyang Q, Li H H, et al. Agricultural Food Chemistry, 2018, 66(24),6188.
37 Li Q F, Bai J L, Ren S Y, et al. Analytical and Bioanalytical Chemistry, 2019, 411(1),171.
38 Wang F Y, Han Y M, Wang S M, et al. Analytical Chemistry, 2019, 91(18), 11856.
39 Wang Y J, Wei Z K, Luo X D, et al. Talanta, 2019, 195,33.
40 Liu Z, Shang C X, Ma H Y, et al. Nanotechnology, 2020, 31(23), 235501.
41 Wu S J, Zhang H, Shi Z, et al. Food Control, 2015, 50,597.
42 Wu Q Q, Long Q, Li H T, et al. Talanta, 2015, 136,47.
43 Wu Q Q, Chen H Y, Fang A J, et al. ACS Sensors, 2017, 2(12),1805.
44 Gao M P, Wu R Y, Mei Q S, et al. ACS Sensors, 2019, 4(11),2864.
45 Gao H Z, Teng C P, Huang D H, et al. Materials Science and Enginee-ring C, 2017, 80,616.
46 Hong E, Liu L M, Bai L M, et al. Materials Science and Engineering C, 2019, 105,110097.
47 Sordillo L A, Pu Y, Pratavieira S, et al. Journal of Biomedical Optics, 2014, 19(5),056004.
48 Bai Y D, Li Y M, Wang R, et al. ACS Omega, 2020, 5(10),5346.
49 Wang Q H, Xu M, Feng W, et al. Journal of Luminescence, 2020, 218,116837.
50 Li H, Tan M L, Wang X, et al. Journal of the American Chemical Society, 2020, 142(4),2023.
51 Xie Y F, He W M, Li F, et al. ACS Applied Materials & Interfaces, 2016, 8(16),10212.
52 Padmanabhan P, Kumar A, Kumar S, et al. Acta Biomaterialia, 2016, 41,1.
53 Wang C Y,Sun M Y. Journal of Clinical Radiology, 2020,39(9),1885(in Chinese).
王成艳,孙美玉.临床放射学杂志,2020,39(9),1885.
54 Li Y, Gu Y Y, Yuan W, et al. ACS Applied Materials & Interfaces, 2016, 8(30),19208.
55 Heinzmann K, Carter L M, Lewis J S, et al. Nature Biomedical Engineering, 2017, 1(9),697.
56 Xu J T, Yang P P, Sun M D, et al. ACS Nano, 2017, 11(4),4133.
57 Lee J, Gordon A C, Kim H, et al. Biomaterials, 2016, 109,69.
58 Syamchand S S, Sony G. Microchimica Acta, 2015, 182(9-10),1567.
59 Sun M Z, Xu L G, Ma W, et al. Advanced Materials,2016,28(5),898.
60 Syamchand S S, Aparna R S, Sony G. Microchimica Acta, 2017, 184(7),2255.
61 Wang F, Liu X G. Chemical Society Reviews, 2009, 38(4),976.
62 Fan W P, Shen B, Bu W B, et al. Biomaterials, 2014, 35(32), 8992.
63 Ding H, Lv Y L, Ni D Z, et al. Nanoscale, 2015, 7(21),9806.
64 Yan X W,Du J Y,Liu Z H,et al. Chinese Journal of Laser Medicine & Surgery,2020,29(4),225(in Chinese).
闫秀伟,杜建洋,刘智慧,等. 中国激光医学杂志,2020,29(4),225.
65 Xu J, Han W, Yang P P, et al. Advanced Functional Materials, 2018, 28(36), 1803804.
66 Liang X H,Fan J,Zhao Y Y,et al. Materials Reports A:Review Papers,2019,33(5),1575(in Chinese).
梁旭华,樊君,赵艳艳,等. 材料导报:综述篇, 2019, 33(5), 1575.
67 Zhao N, Wu B Y, Hu X L, et al. Biomaterials, 2017, 141,40.
68 Wang D, Xue B, Ohulchanskyy T Y, et al. Biomaterials, 2020, 251,120088.
69 Ramírez-García G, Honorato-Colin M Á, Elder De la Rosa, et al. Journal of Photochemistry & Photobiology A: Chemistry, 2019, 384,112053.
70 Cen Y, Deng W J, Yang Y, et al. Analytical Chemistry, 2017, 89(19),10321.
71 Wang Z M, Thang D C, Han Q Y, et al. Journal of Controlled Release, 2020, 324,104.
72 Cong H L, Jia F F, Wang S, et al. Integrated Ferroelectrics, 2020, 206(1), 66.
73 Li R Y, Li Z J, Sun X L, et al. Chemical Engineering Journal, 2020, 382,122992.
74 Ling D P, Li H H, Xi W S, et al. Journal of Materials Chemistry B, 2020, 8(6),1316.
75 Zhang Z M, Shikha S, Liu J L, et al. Analytical Chemistry, 2019, 91(1),548.
[1] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[2] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[3] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[4] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[5] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[6] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[7] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[8] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[9] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[10] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[11] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[12] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[13] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[14] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[15] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed